L'apport des grandes cohortes dans la BPCO...

...sur le développement et la mise en oeuvre d'innovations thérapeutiques

Gaëtan Deslée

Déclaration de liens d'intérêts

J'ai actuellement, ou j'ai eu au cours des trois dernières années, une affiliation ou des intérêts financiers ou intérêts de tout ordre avec les sociétés commerciales suivantes en lien avec la santé.

Novartis, PneumRx, Novartis, GSK, Holaira, Astra, Boehringer (Investigateur, présentations)

congrès de Marssilla-Parc Ohanot envannellijanzie pneumologie envannellijanzie de langue française Oncologie thoracique - Sommell

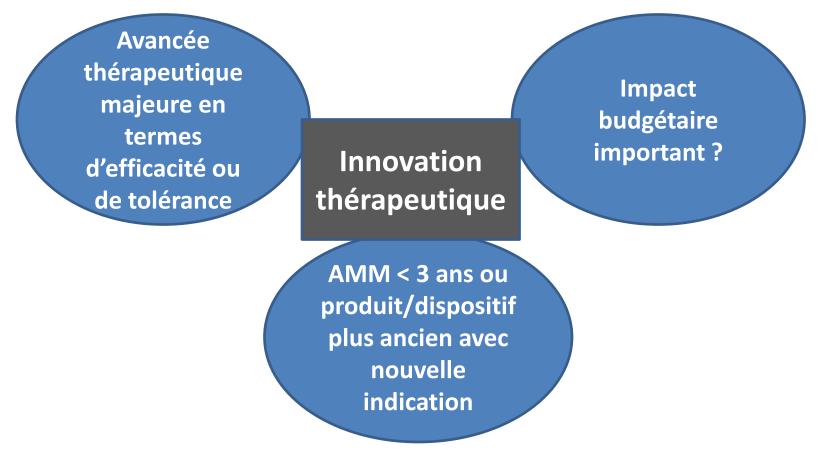
Innovation?

Selon *Le Dictionnaire historique de la langue française* d'Alain Rey, le terme « innovation » est emprunté au bas latin *innovatio* « changement, renouvellement ».

Le mot « innovation » se dit à partir du XVIème siècle.

Le vocable est d'abord attesté dans le registre juridique avec le sens d'introduire quelque chose de nouveau <u>dans</u> une chose établie.

Les théories de l'innovation?


	Concept inchangé	Concept remis en cause
Absence ou faible modification des composants	Innovation incrémentale	Innovation modulaire
Modification majeure des composants	Innovation architecturale	Innovation radicale

Innovation thérapeutique ?

Pas de définition consensuelle de l'innovation thérapeutique !!

Concept Biotechnologique ? Médical ? Commercial/Marketing ? Notion de SMR? Impact sur la vie quotidienne ? Impact budgétaire ?

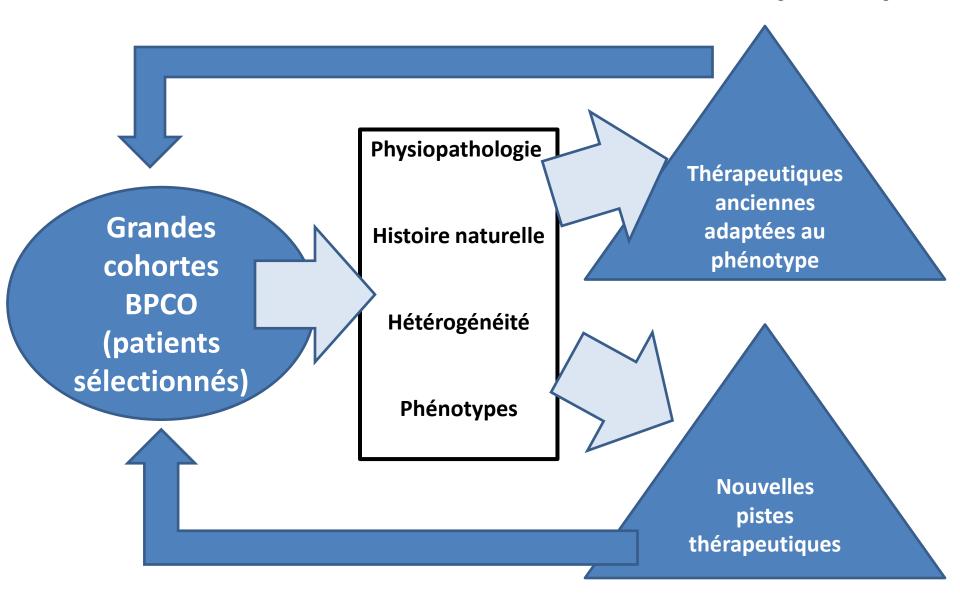
Adapté de Observatoire du médicament et de l'innovation thérapeutique, 2005

Innovation thérapeutique?

Baromètre de l'innovation thérapeutique 2012 en France

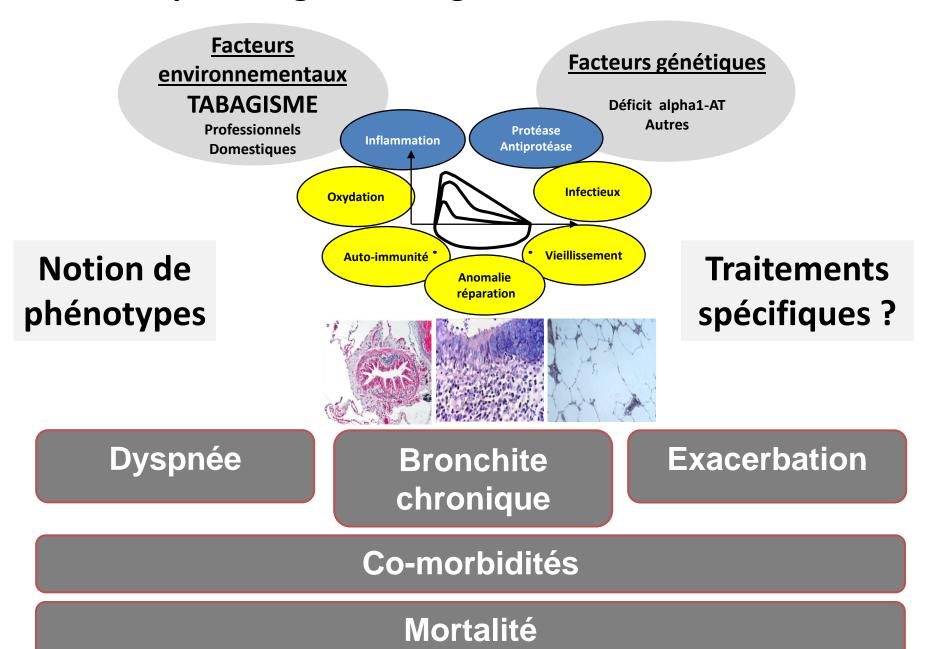
Définition de l'innovation thérapeutique:

- -Mise au point de traitements adaptés à la vie quotidienne (63%)
- -Emergence de nouveaux médicaments (58%)
- -Amélioration des techniques chirurgicales (46%)

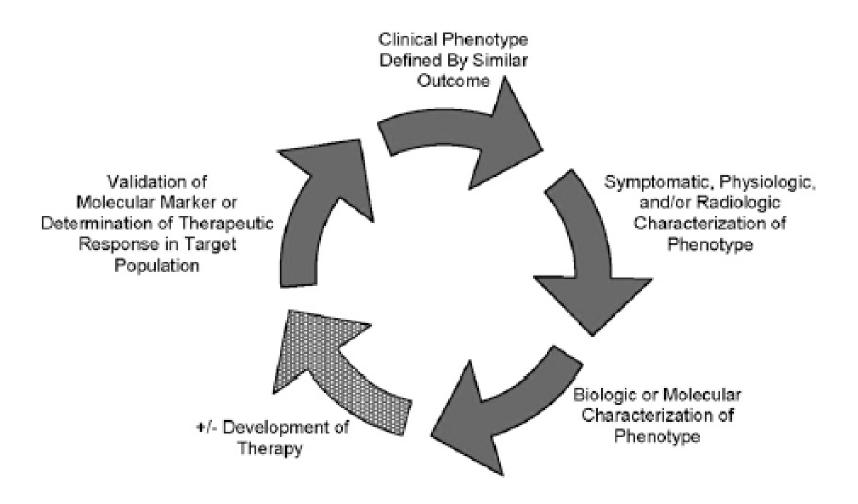

69% se disent mal informés sur les innovations thérapeutiques

Domaines de l'innovation thérapeutique en 2012:

- Cancers (75%): sein, prostate, utérus, colon
- SIDA (50%)
- Maladies cardiovasculaires (34%)



Grandes cohortes BPCO / Innovation thérapeutique


BPCO: une pathologie hétérogène

Innovation thérapeutique / Cohortes BPCO

Stade I Léger

Stade II Modéré

Stade III Sévère

Stade IV Très sévère

VEMS/CVF post-BD < 0.7

VEMS ≥ 80%

50% ≤ VEMS < 80%

30% ≤ VEMS < 50%

VEMS < 30% ou < 50% avec Insuf. Respiratoire Chronique

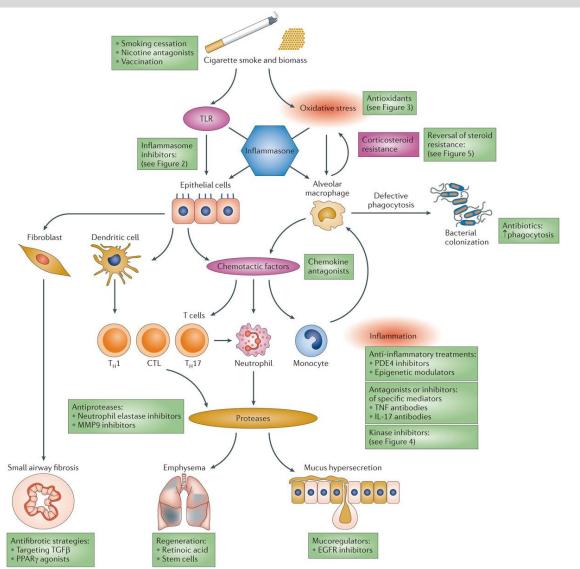
Sevrage tabagique, Vaccination antigrippale et anti-pneumococcique Bronchodilatateur de courte durée d'action (si besoin)

Bronchodilatateurs de longue durée d'action (BDLA) Réhabilitation

Adaptation des thérapeutiques aux phénotypes identifiés ?
Dyspnée/Exacerbations/BC
Formes frontières BPCO/Asthme
Emphysème

Recommandations de la Société de Pneumologie de Langue Française sur la prise en charge de la BPCO.

Rev Mal Respir 2010;27:S1-S76


Glucocorticoïdes inhalés en association fixe avec BDLA si exacerbations répétées (<60%:S-F)

Oxygénothérapie longue durée si IRC Traitements chirurgicaux

Pistes d'innovation thérapeutique

Nouveaux agents pharmacologiques Thérapie cellulaire

Barnes, Nature Reviews Drug Discovery, 2013

Pistes d'innovation thérapeutique

Amélioration des agents pharmacologiques actuels LABA-LAMA-MABA- CSI-ATB

Non pharmacologique

Sevrage tabagique

Politique de santé publique

Réhabilitation respiratoire

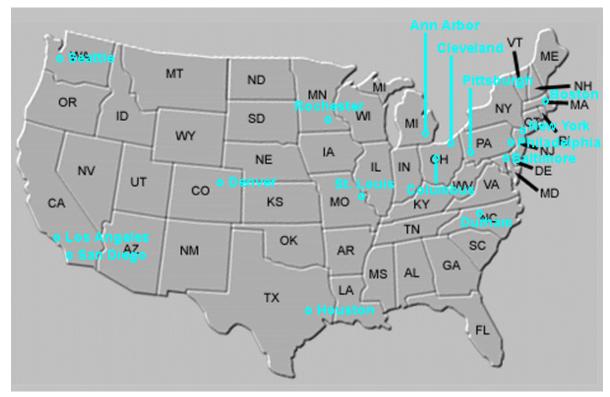
Politique de santé publique

Thérapeutiques interventionnelles

Chirurgicales (RV, Transplantation)
Endoscopiques

Soins de support Oxygénothérapie/Ventilation

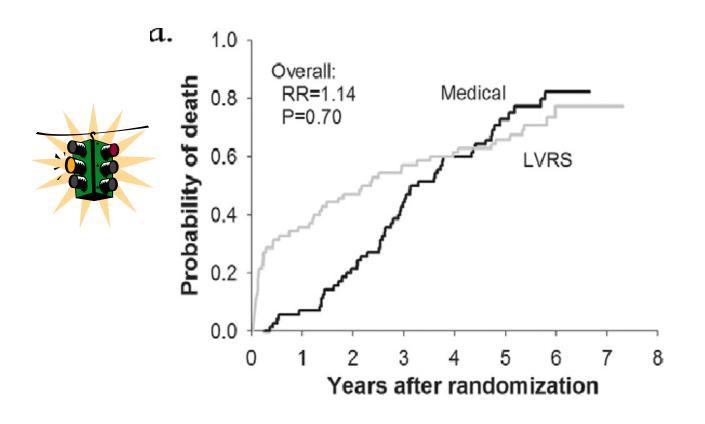
Prise en charge des comorbidités (CV-cancer...)


Innovation thérapeutique / BPCO

Développement de l'innovation thérapeutique dans l'emphysème

Choix des thérapeutiques adaptés aux phénotypes identifiés

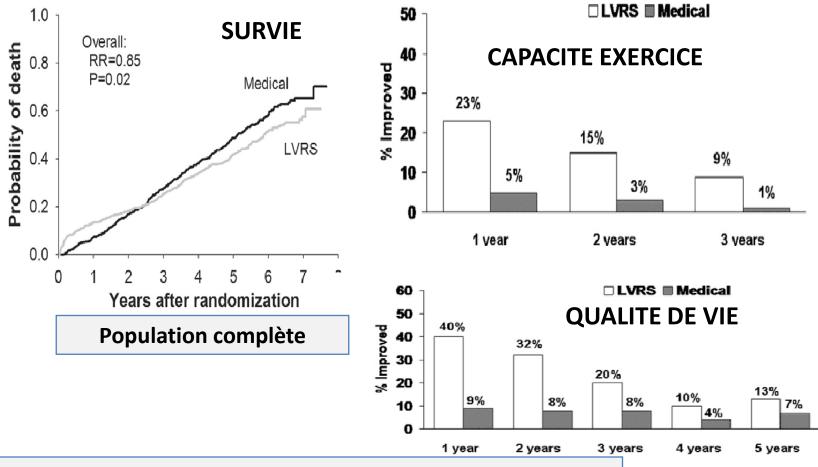
National Emphysema Treatment Trial


3772 patients évalués1216 patients inclus608 RVC610 Traitement médical

Randomisation RVC/Traitement médical

- VEMS < 45 %
- CPT > 100%, VR > 150%
- PO2 > 45 mmHg et PCO2 < 60 mmHg
- Absence d'HTAP
- Absence de co-morbidités cardio-vasculaire

Identification d'un phénotype non répondeur Risque de mortalité augmenté



VEMS < 20%, DLCO < 20% OU Emphysème homogène

Identification d'un phénotype répondeur Risque de mortalité diminué

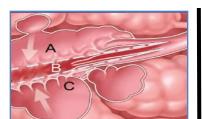
Sous-groupe avec bénéfice significatif +++
Emphysème prédominant lobes supérieurs
Faible capacité Exercice post-réhabilitation (<40W/H,< 25W/F)



Traitements par voie endobronchique dans l'emphysème

Modification de flux

Effet de rétraction

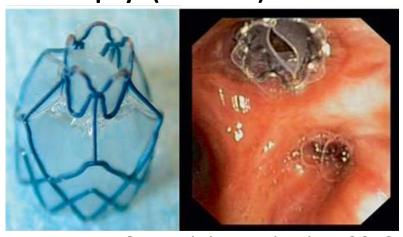

Valves

Extra-anatomique

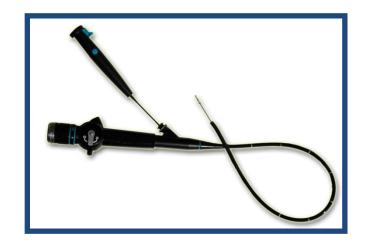
Colle biologique

Vapeur thermique

Spirales

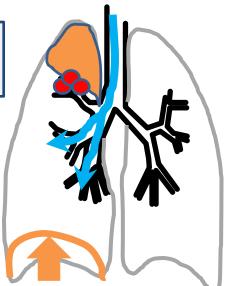

direct

indirect


congrès de Marseille - Farc Chano structure lipriture de langue française Oncologie thoracique - Somuell

Valves unidirectionnelles

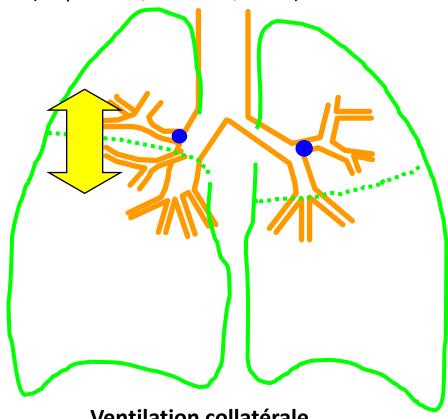
Valve Zephyr (Pulmonx)



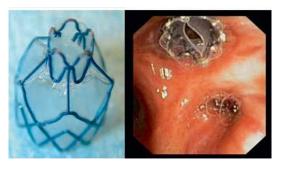
Atélectasie (20-25%)

Redistribution ventilatoire

Conformation diaphragmatique



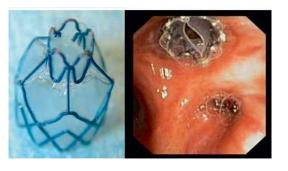
Valves unidirectionnelles



Seulement 25% d'atélectasie

(Hopkinson, AJRCCM, 2005)

Ventilation collatérale chez 60% des emphysèmes

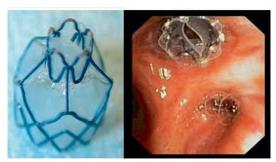

ORIGINAL ARTICLE

A Randomized Study of Endobronchial Valves for Advanced Emphysema

Frank C. Sciurba, M.D., Armin Ernst, M.D., Felix J.F. Herth, M.D., Charlie Strange, M.D., Gerard J. Criner, M.D., Charles H. Marquette, M.D., Ph.D., Kevin L. Kovitz, M.D., M.B.A., Richard P. Chiacchierini, Ph.D., Jonathan Goldin, M.D., Ph.D., and Geoffrey McLennan, M.D., Ph.D., for the VENT Study Research Group*

Table 2. Primary and Secondary Efficacy Outcomes in the Intention-to-Treat Population (Change from Baseline at 6 Months).**					
Outcome	Endobronchial-Valve Therapy (N = 220)	Control (N= 101) nber (95% confidence inter	Between-Group Difference in Change from Baseline พลใ	P Value	
Primary outcome			,		
FEV ₁					
Mean absolute percent change from baseline	4.3 (1.4 to 7.2)	<u>-2.5 (-</u> 5.4 to 0.4)	6.8 (2.1 to 11.5)	0.005	
Mean change in value from baseline — ml	34.5 (10.8 to 58.3)	-25.4 (-48.3 to -2.6)	60.0 (21.5 to 98.4)	0.002	
Mean absolute percent change in predicted value from baseline	1.0 (0.2 to 1.8)	-0.9 (-1.7 to -0.1)	1.9 (0.5 to 11.2)	0.007	
Distance on 6-min walk test†					
Median absolute percent change from baseline	2.5 (–1.1 to 6.1)	-3.2 (-8.9 to 2.4)	5.8 (0.5 to 11.2)	0.04	
Median change from baseline — m	9.3 (- 0.5 to 19.1)	-10.7 (-29.6 to 8.1)	19.1 (1.3 to 36.8)	0.02	
Secondary outcome					
Mean change in score on SGRQ from baseline;	<u>-2.8 (-4</u> .7 to -1.0)	0.6 (-1.8 to 3.0)	-3.4 (-6.7 to 0.2)	0.04	
Mean change in score on Modified Medical Research Council dyspnea scale from baseline	-0.1 (-0.21 to 0.09)	0.2 (0.01 to 0.37)	-0.3 (-0.50 to -0.01)	0.04	
Mean change in cycle ergometry peak workload from baseline — W	0.6 (–1.5 to 2.7)	-3.2 (-4.5 to -1.9)	3.8 (0.1 to 7.5)	0.05	
Median change in supplemental oxygen use from baseline — liters/day†	0.0 (-117.3 to 117.3)	0.0 (-148.2 to 148.2)	-12.0 (-76.7 to 52.7)	0.005	

The NEW ENGLAND JOURNAL of MEDICINE

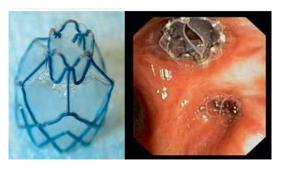

congrès de Marie de la congrès de la congrès

ORIGINAL ARTICLE

A Randomized Study of Endobronchial Valves for Advanced Emphysema

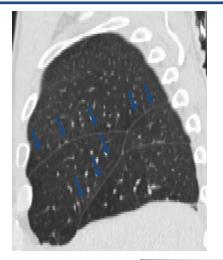
Frank C. Sciurba, M.D., Armin Ernst, M.D., Felix J.F. Herth, M.D., Charlie Strange, M.D., Gerard J. Criner, M.D., Charles H. Marquette, M.D., Ph.D., Kevin L. Kovitz, M.D., M.B.A., Richard P. Chiacchierini, Ph.D., Jonathan Goldin, M.D., Ph.D., and Geoffrey McLennan, M.D., Ph.D., for the VENT Study Research Group*

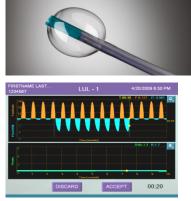
Subgroup and Outcome	Percent Change from at 6 Mo	n Baseline	Percent Change from Baseline at 12 Mo		
	Difference between EBV Group and Control Group	P Value†	Difference between EBV Group and Control Group	P Value†	
	% (95% CI)		% (95% CI)		
High heterogeneity					
FEV ₁	10.7 (3.5 to 17.9)	0.004	13.3 (5.7 to 20.9)	< 0.001	
Distance on 6-min walk test	12.4 (4.8 to 20.1)	0.002	7.1 (-0.8 to 14.9)	0.08	
ow heterogeneity					
FEV ₁	2.5 (-3.1 to 8.2)	0.38	1.5 (-4.7 to 7.6)	0.64	
Distance on 6-min walk test	-1.0 (-6.4 to 8.4)	0.80	-0.6 (-6.4 to 7.7)	0.84	
omplete fissure					
FEV ₁	16.2 (8.8 to 23.8)	<0.001	17.9 (9.8 to 25.9)	< 0.001	
Distance on 6-min walk test	7.7 (–1.8 to 17.2)	0.14	3.9 (-4.0 to 11.8)	0.31	
ncomplete fissure					
FEV ₁	2.0 (-3.9 to 7.9)	0.51	2.8 (-3.8 to 9.4)	0.41	
Distance on 6-min walk test	5.3 (-1.5 to 12.2)	0.13	4.5 (-2.7 to 11.8)	0.20	

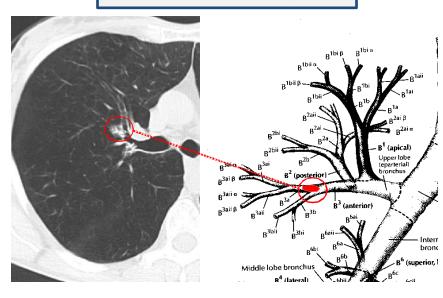


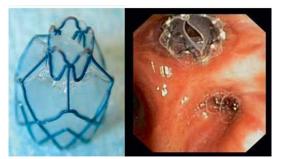
Facteurs limitant l'efficacité de la valve Zephyr

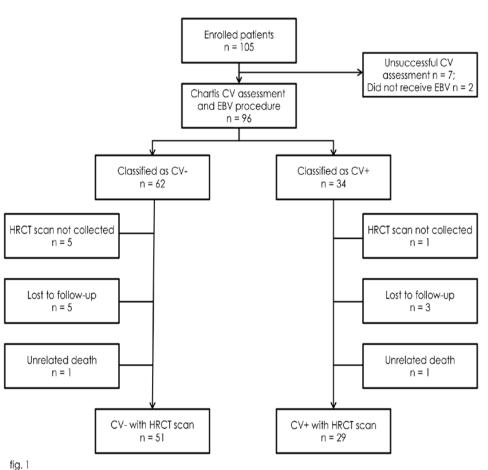
	Complete Fissure (n=44)*			Incomplete Fissure (n=67)*				
	Lobar Oc	clusion (n=20)	No Lobar (Occlusion (n=17)	Lobar Oc	cclusion (n=33)	No Lobar Oc	clusion (n=26)
Target Lobe Volume Reduction (%)	-80 ± 29		-29 ± 24		-16 ± 21		-15 ± 21	
Target Lobe Volume Reduction (ml)	-1470 ± 629	9	-511 ± 422		-299 ± 357	1	-267 ± 335	
Clinical Outcomes	6 M	12 M	6 M	12 M	6 M	12 M	6 M	12 M
FEV ₁ (≥15% improved)	13 (65)	12 (60)	2 (12)	1 (6)	9 (27)	4 (12)	2 (8)	1 (4)
Cycle ergometry (≥10 watts improved)	11 (55)	8 (40)	3 (18)	3 (18)	7 (21)	5 (15)	5 (19)	4 (15)
6MWD test (>60 meters improved)	9 (45)	9 (45)	1 (6)	2 (12)	9 (27)	9 (27)	4 (15)	5 (19)
SGRQ (≥8pts improved)	8 (40)	5 (25)	4 (24)	3 (18)	11 (33)	9 (27)	4 (15)	6 (23)
Lost to Follow-Up		2 (10)		3 (18)		1 (3)		2 (8)
Died		0		2 (12)		1 (3)		0

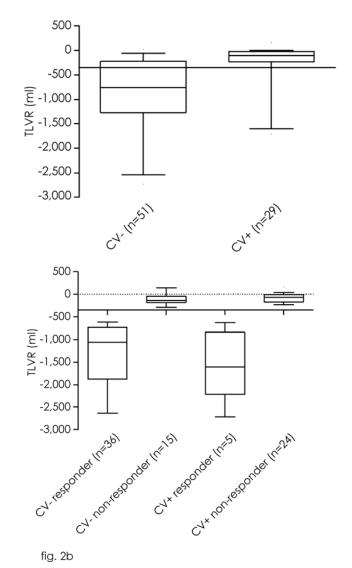

Dus-minus values are means±SD; values with () are number of patients and percent (%); * fissure status for 7 patients in the complete fissure subgroup and 8 patients in the incomplete fissure subgroup could not be determined from the CT scan.


Facteurs limitant l'efficacité de la valve Zephyr

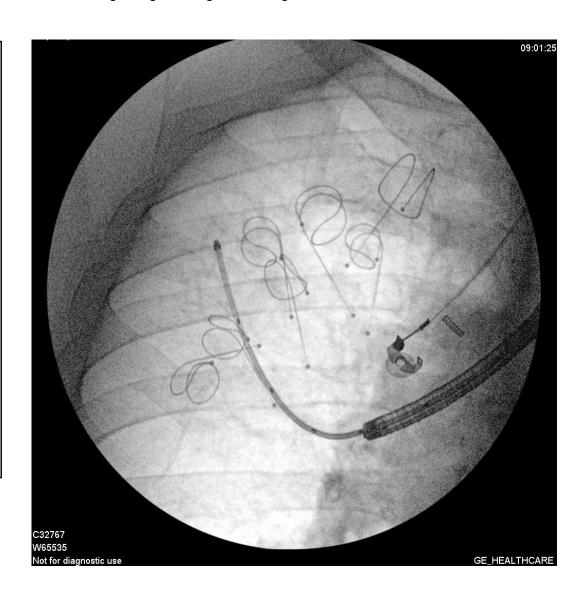

Ventilation collatérale Scissure incomplète




Malposition valve Occlusion incomplète



Facteurs limitant l'efficacité de la valve Zephyr



Traitement endoscopique par spirales

- Anesthésie générale
- Intubation trachéale (8.5-9)
- Bronscoscopie souple (2.8 mm)
- Radioscopie
- 1 lobe par procédure
- 8-10 spirales par lobe
- Traitement bilatéral
- (2 procédures par patient)

Etude multicentrique non randomisée de faisabilité

Critères d'inclusion

- Age > 35 ans
- VEMS post-BD < 45 %
- CPT > 100 %
- VR > 175 %
- Dyspnée : 2 4 (mMRC)
- Arrêt tabagisme > 8 semaines
- Emphysème bilatéral hétérogène (CT)

Critères d'exclusion

- DLCO < 20%
- Test marche 6 min < 140 m
- Infections respiratoires récurrentes
- HTP > 50 mmHg
- Bulle > 1/3 poumon
- Réduction volume chirurgical, Transplantation pulmonaire, Lobectomie
- > 20 mg Prednisone
- Emphysème sévère homogène

Données d'efficacité (55 patients traités en bilatéral)

	6 mois vs baseline, n=54	р	12 mois vs baseline, n=33	р
VEMS	+ 0.11 ± 0.2 L	<0.001	+ 0.12 ± 0.30 L	0.03
VR	- 0.70 ± 0.91 L	<0.0001	- 0.70 ± 0.74 L	<0.0001
T6M	+ 29.1 ± 75.1 m	<0.0001	+ 51.4 ± 66.1 m	<0.001
SGRQ	- 12.8 ± 12.4 pts	<0.0001	- 11.2 ± 13.1 pts	<0.0001
mMRC	- 0.81 ± 1.02 pts	<0.0001	- 0.76 ± 0.82 pts	<0.0001

Hétérogène/Homogène

	Visual CT assessment*			Digital C	T assessment*	
	(12 month follow-up group)			(12 month follow-up group)		
	Heterogeneous Homogeneous		Heterogeneous n=16	Homogeneous n=17		
	n=20	n=13	P	#=16 +0.18 ±0.32	+0.05 ±0.26	р
ΔFEV ₁ , L	+0.14 ±0.30	+0.08 ±0.28	ns			ns
ΔRV, L	-0.69 ±0.87	-0.68 ±0.46	ns	-0.75 ±0.78	-0.66 ±0.72	ns
Δ6MWD, m	+53.9 ±65.1	+46.0 ±67.9	ns	+74.9 ±67.4	+27.9 ±57.8	0.05
ΔSGRQ, pts	-12.9 ±15.1	-7.3 ±8.7	ns	-12.4 ±13.9	-9.1 ±12.9	ns

Emphysème / Innovation thérapeutique

Concept chirurgical

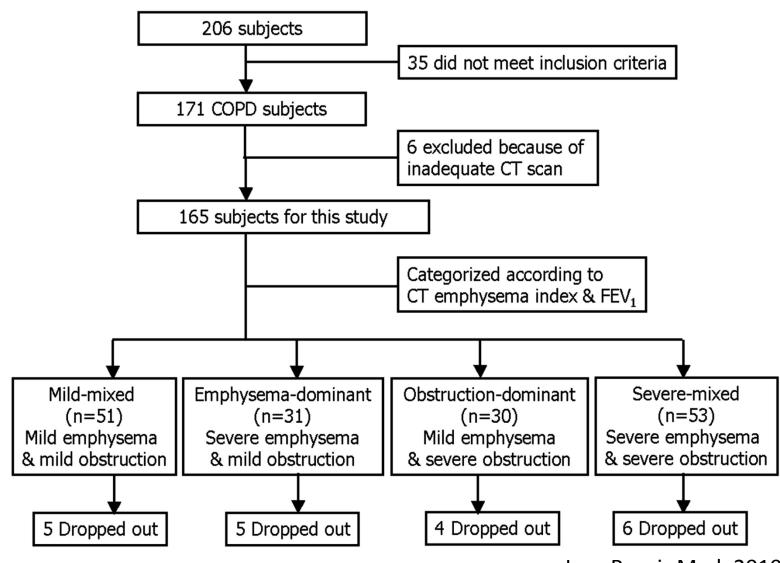
Phénotype non répondeur à risque Phénotype répondeur (Hétérogène, L. Sup, activité faible)

Approche mini-invasive endoscopique Valves

Phénotype répondeur identifié (Ventilation Collatérale, occlusion complète)

Spirales

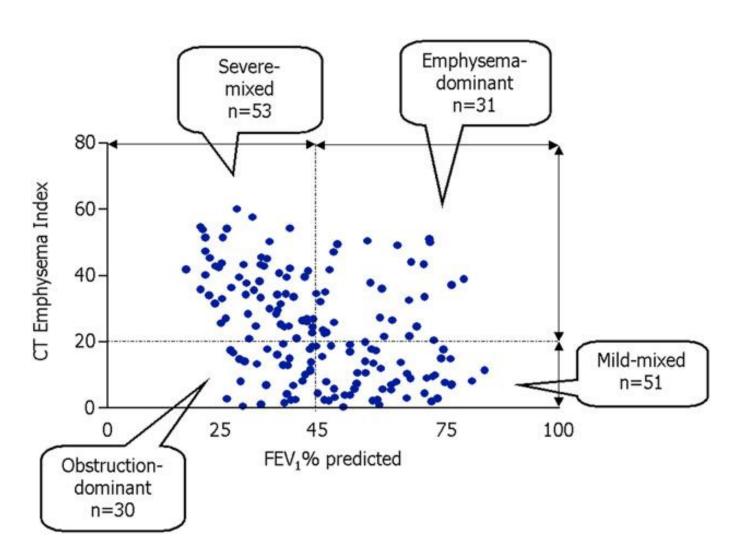
Phase de faisabilité (II)


Homogène/hétérogène

Pas de facteur de réponse au traitement identifié

Phases 3 randomisées en cours

Congrès de Marseille-Parc Ohanot strustetisjanier produmologie actuacate injunier de langue trançaise Oncologie thouselque — Sommell


Traitement basé sur les phénotypes ? Emphysème/Obstruction

Lee, Respir Med, 2010

congrès de Marseille-Parc Ohanot pneumologie attantella juster de langue française Oncologie thoracique —Sommell

Traitement basé sur les phénotypes ? Emphysème/Obstruction

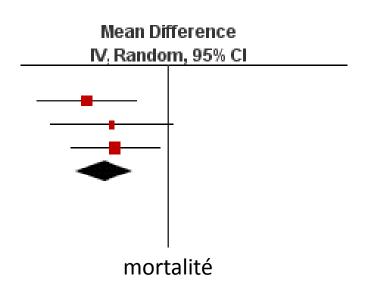
Traitement basé sur les phénotypes ? Emphysème/Obstruction

Table 2 Responses in lung function and dyspnea score following 3 months of treatment with combined long-acting beta-agonist and inhaled corticosteroid.

Subtype	Mild-mixed	Emphysema-dominant	Obstruction-dominant	Severe-mixed
ΔFEV_1 , liters	0.169 ± 0.218	0.032 ± 0.263 *	$0.207 \pm 0.223^{\S}$	0.155 ± 0.166^{9}
(% predicted)	(5.1 ± 6.4)	$(0.9 \pm 9.3*)$	$(6.7 \pm 7.3^{\S})$	$(5.1 \pm 5.5^{\P})$
ΔTLC, liters	-0.09 ± 0.52	0.09 ± 0.57	-0.41 ± 1.11	-0.16 ± 0.56
Δ IC, liters	$\textbf{0.07} \pm \textbf{0.47}$	$\textbf{0.22} \pm \textbf{0.48}$	0.11 ± 0.30	0.11 ± 0.33
ΔRV, liters	-0.20 ± 0.64	-0.11 ± 0.85	$-0.63\pm1.26^{\dagger\S}$	-0.31 ± 0.77
ΔMMRC score	-0.39 ± 1.02	-0.16 ± 0.55	-0.68 ± 1.03 §	-0.26 ± 0.74

Traitement basé sur les phénotypes ? Exacerbations

Exacerbations: Facteurs de risque majeur mortalité / BPCO


(Piquet, Eur Respir J, 2003)

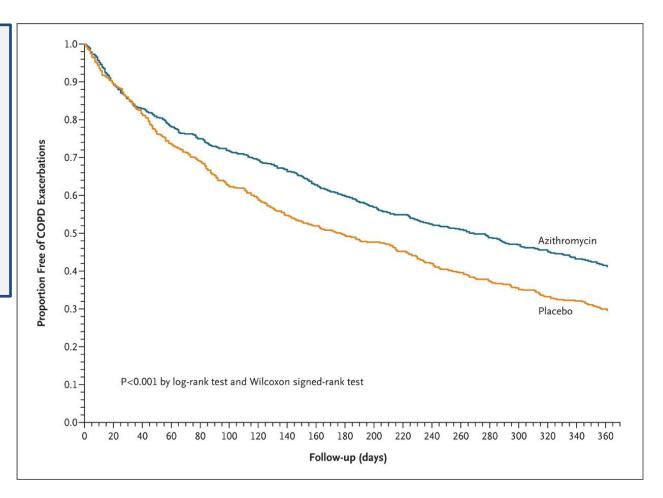
Phénotype exacerbateurs fréquents

LABA-ICS: diminution du nombre d'exacerbations

VEMS<50% (60%) + 2EXA

Nécessité de stratégies thérapeutiques innovantes / EXA

Réhabilitation respiratoire post-EXA

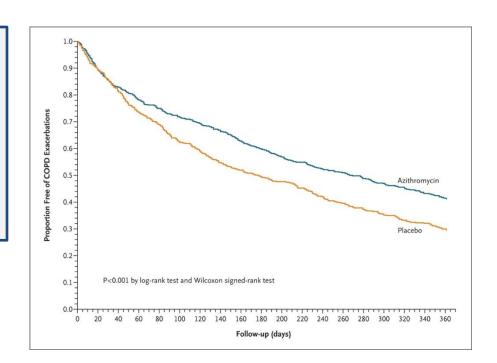

Effet sur mortalité, qualité de vie, fréquence hospitalisation

Puhan, Cochrane, 2011

Traitement basé sur les phénotypes ? Exacerbations

Critères d'inclusion BPCO VEMS post-BD < 80% + 1 critère au moins O2 longue durée Corticoïdes systémiques (12 mois) EXA BPCO Urgences (12 mois)

Délai moyen de la première exacerbation: 266 jours AZM vs 174 jours placébo Fréquence des exacerbations: 1,48/an AZM vs 1,83/an placébo


Traitement basé sur les phénotypes ? Exacerbations

Analyses de sous-groupes ??

Effet moindre AZM

- -Fumeurs actifs
- -GOLD IV
- -âge<65 ans
- -O2 thérapie
- -Traitements inhalés

Altérations auditives: 25% AZM vs 20% Placébo

AZM: plus faible colonisation oro-pharyngée, fréquence augmentée résistances macrolides

Cohortes BPCO / Innovation thérapeutique

		Caractérisation précise	phénotypes de BPCO
			Compréhension physiopathologique
		Concept inchangé	Concept remis en cause
Amélioration traitements actuels	Absence ou faible modification des composants	Innovation incrémentale	Innovation modulaire
Nouvelles stratégies traitement	Modification majeure des composants	Innovation architecturale	Innovation radicale

Inclusion des patients BPCO dans des études ++++
Evaluation thérapeutiques / Phénotypes identifiés
Recherche fondamentale en interface avec caractérisation clinique,
biologique, imagerie, suivi longitudinal

MERCI

gdeslee@chu-reims.fr