Pollution atmosphérique et effets respiratoires aigus

Chantal Raherison Semjen
Université de Bordeaux U897
Service des Maladies Respiratoires

« Mélange » complexe constitué de milliers de polluants

Pollution atmosphérique

Sources Anthropiques

trafic routier, transports aériens ou maritimes production d'énergie, industries, usines d'incinération chauffage domestique agriculture Sources naturelles érosion, algues, volcans, marécages,

Effets de la pollution atmosphérique

> Effets à court terme

Manifestations cliniques, fonctionnelles ou biologiques survenant dans des délais brefs (quelques jours) suite aux variations journalières des niveaux ambiants de la pollution atmosphérique

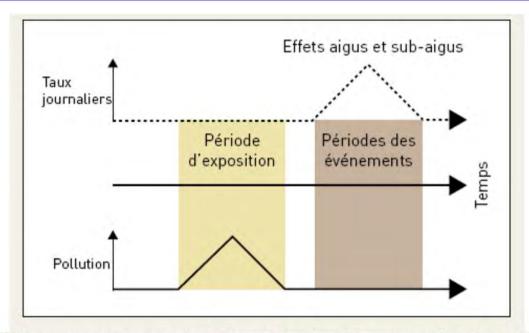
➤ Effets à long terme

Affections ou pathologies survenant après une exposition chronique (plusieurs mois ou années) à la pollution atmosphérique ambiante

Aspects méthodologiques : Evaluation de l'exposition dans les études épidémiologiques

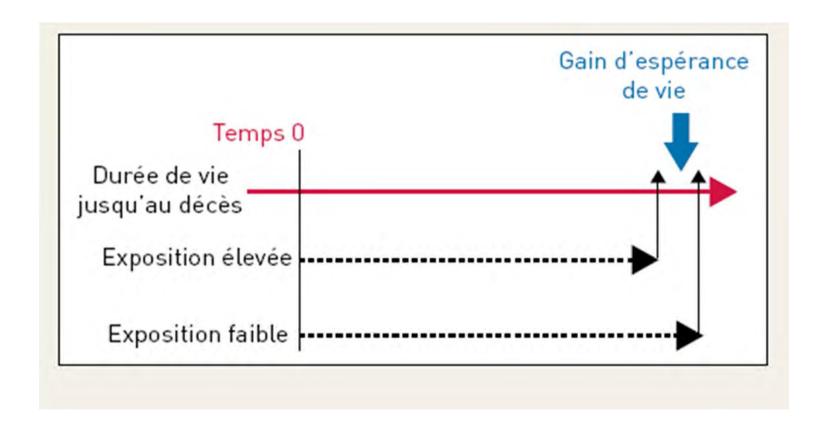
Effets de la pollution atmosphérique

> Effets à court terme


Manifestations cliniques, fonctionnelles ou biologiques survenant dans des délais brefs (quelques jours) suite aux variations journalières des niveaux ambiants de la pollution atmosphérique

> Effets à long terme

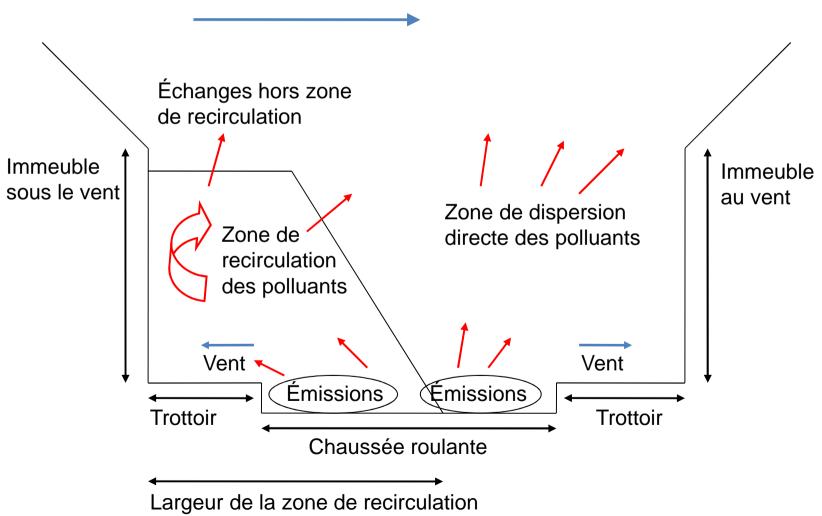
Affections ou pathologies survenant après une exposition chronique (plusieurs mois ou années) à la pollution atmosphérique ambiante


Aspects méthodologiques : Evaluation de l'exposition dans les études épidémiologiques

Effets aigus liés à la pollution

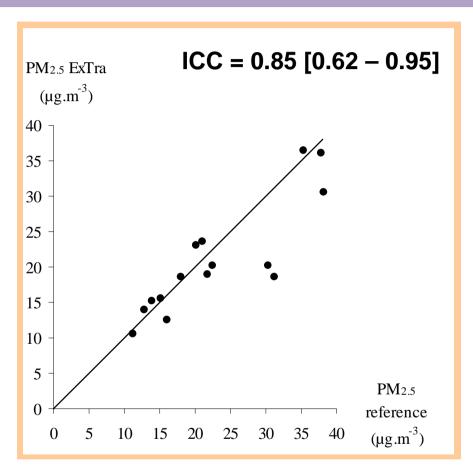
- Les études de cas croisés sont une variante utile de l'approche des séries temporelles. Les niveaux de pollution observés pendant ou avant un événement observé (par exemple décès ou crise cardiaque) sont comparés avec les niveaux d'un « jour témoin » sélectionné. Selon l'hypothèse de nullité, la qualité de l'air ne devrait pas être différente entre le jour de l'événement et le jour de contrôle.
- Les études de panel sont particulièrement efficaces dans la recherche des effets aigus parmi des groupes (ou panels) dont la sélection est très spécifique (par exemple des asthmatiques ou des patients ayant des antécédents de crise cardiaque). Les participants aux études de panel doivent fournir de manière répetée des données de santé (mesure du débit de pointe expiratoire, analyses répétées de marqueurs sanguins, etc.) Selon l'hypothèse de nullité, les changements journaliers de la qualité de l'air ne devraient pas être associés aux fluctuations journalières des effets sur la santé.

Effets à long terme



Axe: pollution atmosphérique

Expologie : Validité d'un modèle de dispersion des polluants pour estimer l'exposition aux particules fines d'origine automobile


Indice ExTra, Modèle Street

Direction et vitesse du vent au niveau des toits

Validation of dispersion model to PM _{2.5}: Index ExTra

- Mathematical dispersion of pollutants course for a given pollutant (tracer)
- Previous validation: NOx
- Linkages to a system of geographic information (GIS)
- ExTra index provides an assessment of PM_{2.5} exposure similar to that of the reference method.
- ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology

Measured and calculated PM_{2.5} concentrations with the line of equality

Kostrzewa A, Reungoat P, Raherison C.

Validity of a traffic air pollutant dispersion model to assess exposure to fine particles. Environ Res. 2009

Physiopathologie

matter

rogression

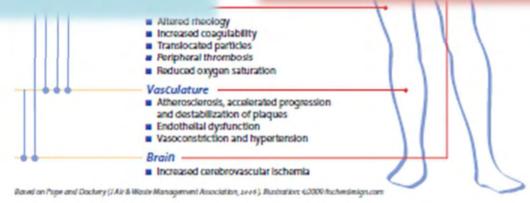
tion of COF nonary refle

flammati

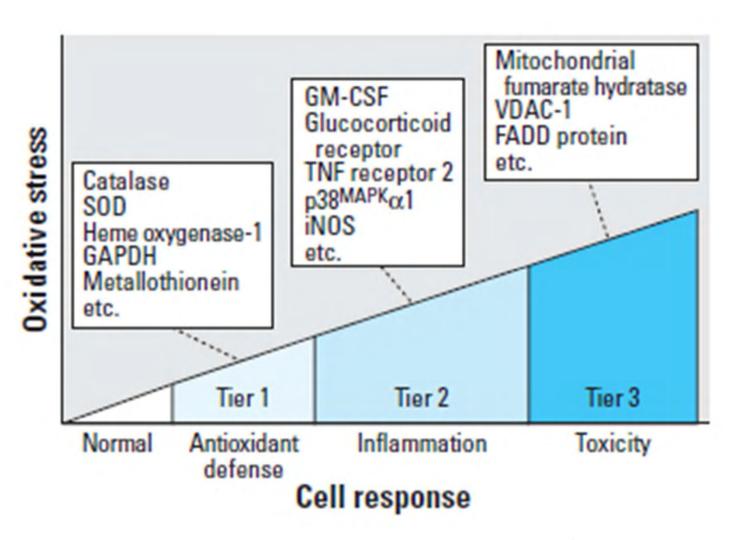
tory medial platelet acti

ac autonom

ocardial ist


tress

Effets respiratoires


- effet cytotoxique
- action inflammatoire
- inférence avec le système immunitaire
- propriétés oxydantes (NO₂ et O₃ +++)

Effets cardiovasculaires

- progression athérosclérose
- modifications fonction cardiaque autonome

Effets cellulaires des polluants

Deaths in 2010 (95% CI)

Household air pollution*	3-55 million (2-68 million to 3-62 million)
Ambient pollution	3-22 million (2-82 million to 3-62 million)
Occupational risk factors†	0-85 million (0-66 million to 1-06 million)
Lead exposure	0-67 million (0-58 million to 0-78 million)
Second-hand smoke	0-60 million (0-45 million to 0-52 million)
Unimproved sanitation	0-24 million (0-01 million to 0-48 million)
Unimproved water source	0-12 million (0-01 million to 0-23 million)
Residential radon	0-10 million (0-01 million to 0-22 million)

^{*}Household air pollution contributes about 16% to the worldwide disease burden of ambient air pollution.² †Occupational risks include carcinogens, asthmagens, air pollutants, etc. Adapted from Lim and colleagues.²

Table 1: Deaths attributable to environmental risks worldwide

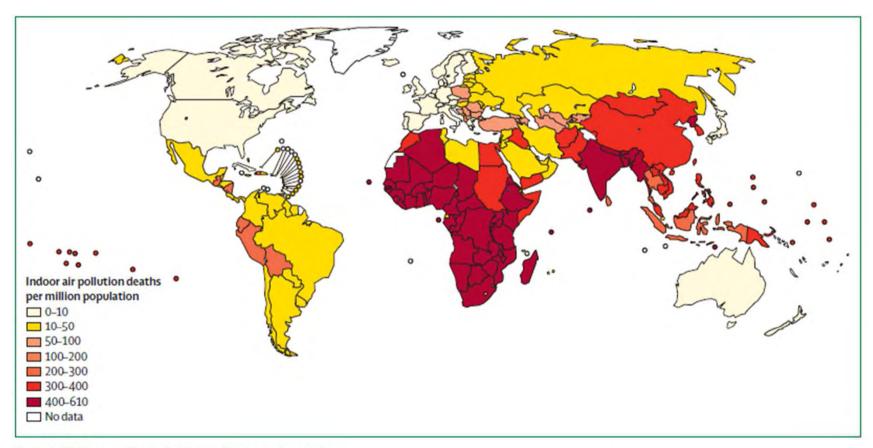


Figure 2: WHO map of household air pollution and mortality

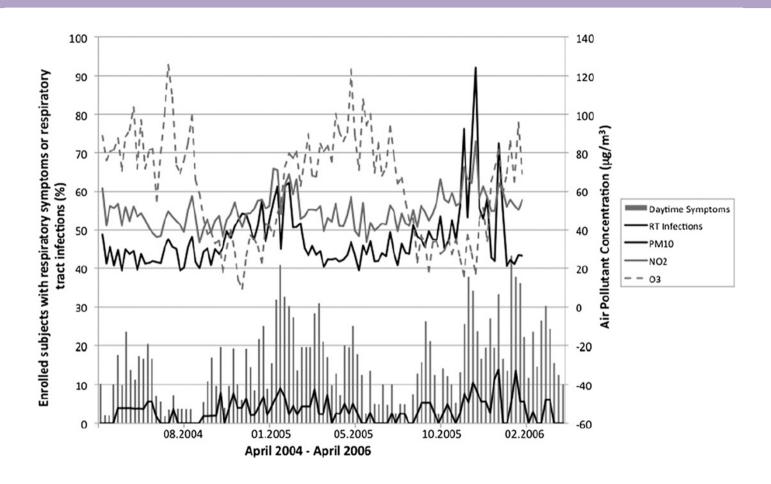
World map of poverty (not shown) shows nearly identical geographical distribution. @WHO 2005. All rights reserved.

Symptômes respiratoires aigus

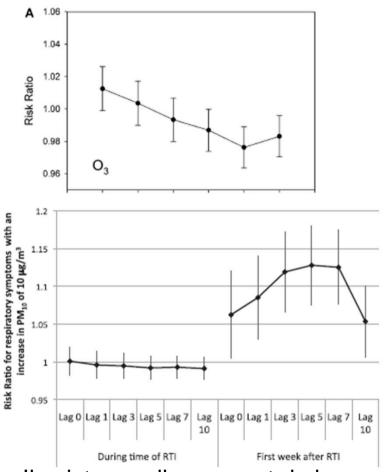
- En population générale :
 - Enfants symptomatiques : Toux, gêne respiratoire
 - Enfants non symptomatiques : Variations du DEP
 - Effets PM10 avec un pic au 5^{ème} jour (Pope, 1992)

Cohorte COPSAC (mère asthmatique) n=205

Table 3 Associations between incident wheezing symptoms and single-day and 3-day mean concentrations (lag 2-4) of air pollutants with maximum data available for each pollutant (12 December 1998 to 19 December 2004)

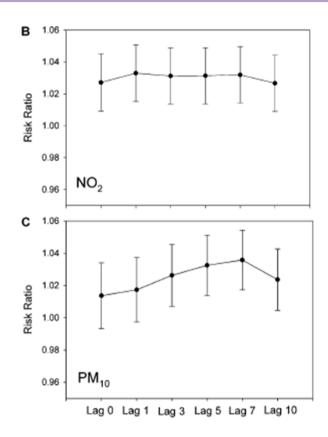

	Age 0-1	Age 1–2	Age 2-3	Age 0-3
	OR* (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
PM ₁₀ (μg/m³)				
n†	189	171	155	195
Lag 0	1.05 (0.88 to 1.25)	1.00 (0.86 to 1.15)	0.87 (0.72 to 1.06)	0.97 (0.87 to 1.08)
Lag 1	1.00 (0.82 to 1.22)	1.02 (0.87 to 1.19)	0.95 (0.78 to 1.15)	0.99 (0.89 to 1.10)
Lag 2	1.01 (0.83 to 1.23)	1.05 (0.93 to 1.19)	0.99 (0.82 to 1.17)	1.01 (0.92 to 1.12)
Lag 3	1.20 (0.98 to 1.46)	0.96 (0.84 to 1.09)	1.03 (0.84 to 1.25)	1.03 (0.93 to 1.14)
Lag 4	1.23 (1.02 to 1.48);	1.04 (0.90 to 1.21)	0.89 (0.74 to 1.09)	1.04 (0.94 to 1.15)
3-day mean§	1.21 (0.99 to 1.48)	1.03 (0.88 to 1.22)	0.94 (0.74 to 1.19)	1.04 (0.92 to 1.17)
JFP _{NC} § (particles/m³)				
n	144	157	151	179
Lag 0	0.71 (0.44 to 1.16)	0.82 (0.62 to 1.09)	1.00 (0.67 to 1.49)	0.85 (0.68 to 1.05)
Lag 1	0.88 (0.56 to 1.38)	0.92 (0.70 to 1.21)	0.93 (0.68 to 1.26)	0.91 (0.75 to 1.10)
Lag 2	1.60 (0.92 to 2.67)	0.88 (0.67 to 1.16)	1.03 (0.73 to 1.44)	1.00 (0.81 to 1.24)
Lag 3	1.07 (0.67 to 1.73)	0.79 (0.59 to 1.06)	0.89 (0.63 to 1.27)	0.84 (0.70 to 1.02)
Lag 4	1.50 (0.89 to 2.54)	0.99 (0.76 to 1.29)	0.62 (0.44 to 0.89)	0.88 (0.73 to 1.05)
3-day mean	1.92 (0.98 to 3.76)	0.83 (0.58 to 1.17)	0.72 (0.49 to 1.04)	0.85 (0.68 to 1.07)
NO ₂ (ppb)				
n	190	171	155	196
Lag 0	0.78 (0.61 to 1.00)	0.99 (0.85 to 1.17)	1.00 (0.82 to 1.22)	0.93 (0.82 to 1.05)
Lag 1	0.82 (0.67 to 1.01)	1.03 (0.86 to 1.24)	0.94 (0.78 to 1.13)	0.95 (0.84 to 1.06)
Lag 2	1.12 (0.88 to 1.42)	1.07 (0.90 to 1.26)	1.12 (0.94 to 1.36)	1.09 (0.97 to 1.21)
Lag 3	1.42 (1.15 to 1.77);	0.99 (0.80 to 1.22)	1.20 (0.98 to 1.46)	1.13 (0.99 to 1.30)
Lag 4	1.33 (1.06 to 1.68);	1.06 (0.89 to 1.26)	1.00 (0.82 to 1.21)	1.09 (0.96 to 1.23)
3-day mean	1.45 (1.08 to 1.95)‡	1.09 (0.85 to 1.40)	1.19 (0.98 to 1.45)	1.19 (1.01 to 1.30)‡
NO, (ppb)				
n	190	171	155	196
Lag 0	0.84 (0.68 to 1.02)	0.98 (0.85 to 1.12)	1.00 (0.84 to 1.19)	0.94 (0.85 to 1.04)
Lag 1	0.82 (0.69 to 0.98)	1.02 (0.87 to 1.19)	0.90 (0.77 to 1.05)	0.92 (0.84 to 1.02)
Lag 2	1.05 (0.87 to 1.28)	1.06 (0.92 to 1.22)	1.11 (0.95 to 1.30)	1.07 (0.97 to 1.17)
Lag 3	1.30 (1.09 to 1.53)‡	0.99 (0.83 to 1.18)	1.12 (0.95 to 1.33)	1.09 (0.98 to 1.22)
Lag 4	1.26 (1.03 to 1.54)‡	1.03 (0.89 to 1.19)	1.01 (0.85 to 1.19)	1.07 (0.96 to 1.19)
3-day mean	1.30 (1.03 to 1.65)‡	1.09 (0.89 to 1.32)	1.14 (0.97 to 1.35)	1.14 (1.00 to 1.30)‡

Andersen, Thorax 2008


Symptômes respiratoires chez les asthmatiques

- Asthmatiques adultes
 - ↑ incidence et prévalence des crises d'asthme, des sifflements et de la toux (RR=1,6 3,0) (Paris, Neukirch, 1998)
- Asthmatiques enfants
 - † fréquence et de la durée des crises d'asthme, et des symptômes asthmatiques (RR=1,2 2,1) (Paris, Ségala, 1998)
- Bronchite aiguë (enfants)
 - PM10 (RR=2,2) (SCARPOL, Braun-Fahländer,1997)

Symptômes respiratoires aigus hebdomadaires et niveaux de pollution, cohorte suisse n=366



Symptômes respiratoires aigus hebdomadaires et niveaux de pollution, cohorte suisse n=366

Il existe un allongement de la durée des exacerbations 3-4 jours en moyenne

Stern et al.

Il existe une augmentation des symptômes respiratoires entre 1-7 jours pour le NO2 et à 7 jours pour PM 10 (10 ug/m3)

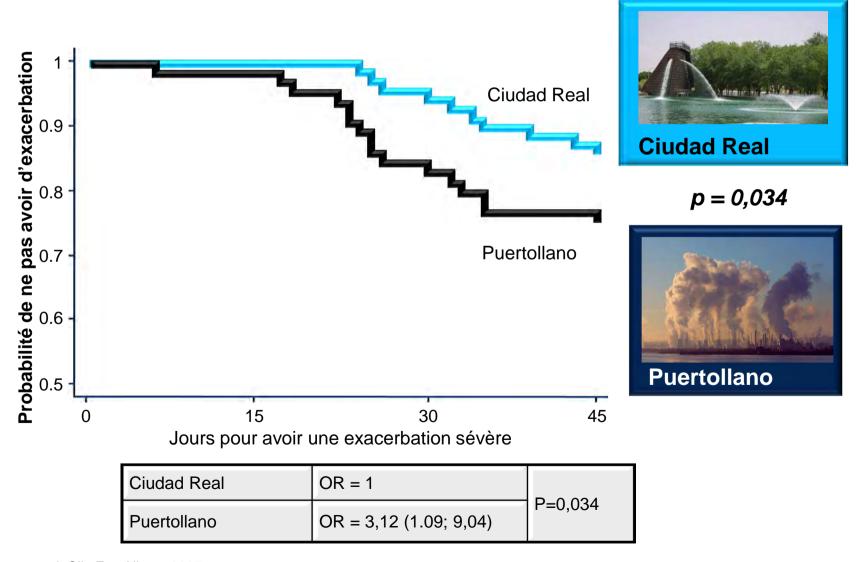
Am J Respir Crit Care Med Vol 187, Iss. 12, pp 1341–1348, Jun 15, 2013 Copyright © 2013 by the American Thoracic Society

Mécanismes pollution-prédisposition aux infections ?

- Diminution de la phagocytose des macrophages ?
 - (Frampton, Environ Res 1989)
- Diminution de l'activité anti-bactérienne ?
 - (Becker, Exp Lung Res 2003)
- Diminution des défenses immunitaires ?
 - (Rose, 1989)

Rôle de l'inflammation préalable liée à la pollution dans l'exacerbation d'asthme allergique aux pollens

- Cohorte de 137 patients, Castilla La Mancha
- 2 villes avec la même exposition aux pollens



- Suivi sur 3 ans (2 saisons polliniques)
- Etude des exacerbations polliniques

Rôle de l'inflammation préalable par la pollution dans l'exacerbation due aux pollens

Interaction gène-environnement : stress oxydant

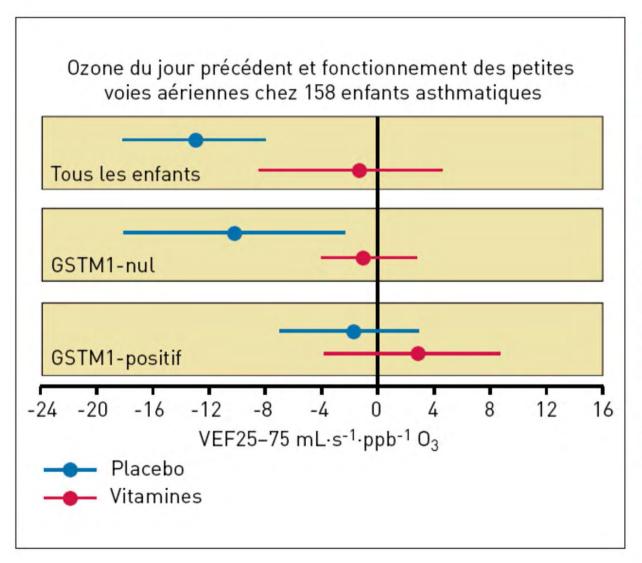


Figure 9.1. Association entre la fonction des petites voies aériennes, indiquée par VEF25-75, et les concentrations d'ozone ambiant (jour précédent) chez 158 enfants asthmatiques participant à une étude d'intervention contrôlée de 18 mois. Les associations étaient particulièrement élevées chez les sujets ne prenant pas de complément à base d'antioxydants. De plus, les effets de l'ozone ont été bien plus intenses chez ceux présentant une variante non fonctionnelle dans le gène GSTM, important dans les mécanismes de défense oxydative. Modifié à partir de [10, 49].

- Diminution de la fonction respiratoire
 - Meta-analyse (Zmirou et al, 1997)
 - BS, SO₂, NO₂, O₃ \downarrow **1 2%** (100 µg/m³)
 - PEACE study (Roemer et al, 1998)
 - Pas d'association
 - Recommandations pour les études de panel

Diminution de la fonction respiratoire

- Asthmatiques adultes
 - BS, SO₂
 4 8% (50 µg/m³ hiver)
 chez les patients modérément malades (Paris, Neukirch, 1998)
- Asthmatiques enfants
 - BS, SO2 ↓ 5% (50 µg/m³ hiver)
 chez les patients modérément malades (Paris, Ségala, 1998)

Exposition au diesel chez l'asthmatique

Characteristic	All Participants (N= 60)	Participants with Mild Asthma (N=31)	Participants with Moderate Asthma (N = 29)	P Value
Female sex — no. (%)	29 (48)	14 (45)	15 (52)	0.61
Age — yr				0.13
Mean	32	31	34	
Range	19-55	20-49	19-55	
Height — cm	172±8.8	172±8.4	171±9.3	0.67
Body-mass index†	23.2±3.7	23.2±3.6	23.2±3.9	0.98
White race — no. (%);	47 (78)	26 (84)	21 (72)	0.28
FEV ₁ — % of predicted value	88.9±10.8	93.4±6.9	84.1±12.3	< 0.001
Atopy — no. (%)§	42 (84)	24 (89)	18 (78)	0.31
Methacholine PC ₂₀ — mg/ml¶	2.82±2.47	2.73±2.43	2.92±2.56	0.78
Treatment with inhaled corticosteroids—no. (%)	37 (62)	12 (39)	25 (86)	< 0.001
Unlimited exercise tolerance — no. (%)	51 (85)	28 (90)	23 (79)	0.23
Asthma affected by exercise — no. (%)				0.27
Yes	44 (73)	20 (65)	24 (83)	
Not sure	4 (7)	3 (10)	1 (3)	
Asthma affected by traffic fumes — no. (%)				0.19
Yes	17 (28)	7 (23)	10 (34)	
Not sure	30 (50)	19 (61)	11 (38)	

Exposition au diesel chez l'asthmatique

Variable	Oxford Street	Hyde Park	P Value
Exposure			
Nitrogen dioxide in previous week (µg/m³)			0.90
Median	23.5	22.3	
Range	1.46-135	0.49-61.6	
Temperature (°C)			0.04
Median	10.8	9.1	
Range	4-17.1	2.5-17.2	
Relative humidity (%)			0.03
Median	66	76	
Range	41.9-93.2	43.2-93.3	
PM _{2.7} (µg/m³)			< 0.001
Median	28.3	11.9	
Range	13.9-76.1	3-55.9	
Ultrafine particles (thousands/cm³)			< 0.001
Median	63.7	18.3	
Range	39.5-92.4	10.3-37.1	
Elemental carbon (µg/m³)			< 0.001
Median	7.5	1.3	
Range	3.9-16	0.4-6.7	
Nitrogen dioxide (µg/m³)			< 0.001
Median	142	21.7	
Range	10.7-289	2.4-146	
PM ₁₀ (µg/m³)†			0.03
Median	125	72	
Range	62-161	60-100	
Baseline lung function			
FEV ₁	93.8±11.0	92.2±11.4	0.44
FVC	103.5±12.4	102.8±11.8	0.76
FEF23-73	65.6±16.8	63.4±18.6	0.51

Exposition au diesel chez l'asthmatique

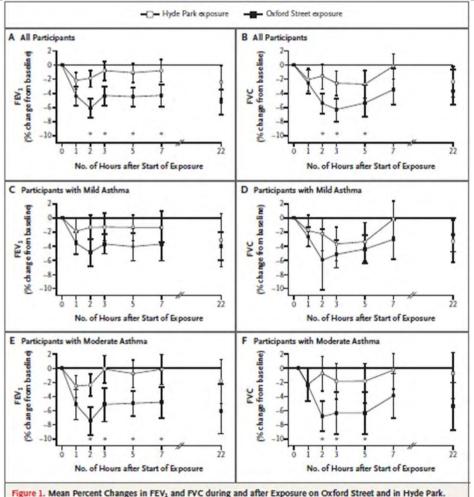



Figure 1. Mean Percent Changes in FEV₁ and FVC during and after Exposure on Oxford Street and in Hyde Park.

Percent changes from initial values in the forced expiratory volume in 1 second (FEV₁) and forced vital capacity (FVC) are shown for all the study participants (Panels A and B, respectively), those with mild asthma (Panels C and D, respectively), and those with moderate asthma (Panels E and F, respectively). Asterisks denote P<0.05 for the difference in values between Oxford Street and Hyde Park exposures. I bars represent 95% CI.

Effet de la pollution de proximité

Associations entre l'exposition à la pollution atmosphérique
de proximité à moyen terme (intérieure et extérieure) et la fonction respiratoire des enfants

D. II.	Modélisati avant la		Modélisation de la variation du DP après la course		
Polluants en μg/m³	β (IC 95%)	Intercept aléatoire propre à l'école $\hat{\sigma}_{\gamma 0}^2$ (P valeur)	β (IC 95%)	Intercept aléatoire propre à l'école $\hat{\sigma}_{\gamma_0}^2$ (P valeur)	
Intérieur					
Оз	-0,21 (-0,55 ; 0,13)	43,39 (0,02)	0,02 (-0,05 ; 0,09)	0,99 (0,10)	
NO ₂	0,15 (-0,85 ; 1,16)	48,33 (0,01)	0,00 (-0,16; 0,17)	1,16 (0,07)	
Extérieur					
Оз	-0,32 (-0,61 ; -0,03)	28,43 (0,09)	0,04 (-0,02; 0,10)	0,60 (0,22)	
NO₂	-0,04 (-1,25 ; 1,17)	47,91 (0,01)	0,03 (-0,18 ; 0,24)	1,13 (0,08)	

Variables d'ajustement forcées : sexe, âge, IMC, naissance à terme, saison des pluies, température extérieure et humidité relative Facteurs de confusion inclus suite à une procédure ascendante manuelle : asthme, atopie et scolarisation dans l'agglomération pointoise pour le DP avant la course et seulement l'atopie pour la variation du DP après la course

B. Amadeo¹, C. Robert¹, V. Rondeau1,^{2,1}, MA. Mounouchy³, L. Cordeau³, E. Citadelle³, J. Gotin³, M. Gouranton³, G. Marcin³, D. Lauras³, C. Raherison^{1,4} BMC Public Health 2015 in press

Etude ISAAC-II Guadeloupe

Impact de l'ozone sur la fonction ventilatoire des enfants

→ Concentrations des différents polluants étudiés à moyen terme

Polluants	WHO Guidelines	Type de pollution	Nombre d'écoles	en μg/m³			
	en µg/m³	polition	u ecoles	Moyenne	Ecart-type	Minimum	Maximum
O ₃	100	Proximité intérieure	27	49,5	14,8	23,6	80,1
		Proximité extérieure	27	55,3	16,4	21,1	90,9
		Fond	7	54,1	6,8	40,5	59,2
NO ₂	40	Proximité intérieure	27	5,3	4,3	0,9	21,5
		Proximité extérieure	27	5,3	3,5	0,9	15,3
		Fond	7	14,8	3,8	11,5	22,1
SO ₂	20	Fond	7	4,7	3,7	1,8	12,7
PM ₁₀	20	Fond	7	23,9	6,8	16,5	33,4

WHO air quality guidelines, 2005.

BMC Public Health 2015

B. Amadeo¹, C. Robert¹, V. Rondeau1,^{2,1}, MA. Mounouchy³, L. Cordeau³, E. Citadelle³, J. Gotin³, M. Gouranton³, G. Marcin³, D. Lauras³, C. Raherison^{1,4}

• Visites médicales (Medina et al, 1997)

Asthme

```
• Enfants <15 ans
```

```
- Particules (BS) et SO_2 32 - 34% (40-50 μg/m³) 29% (50 μg/m³)
```

Affections irritatives de l'œil

```
- O_3 9% (50 \mug/m<sup>3</sup>)
```

Admissions hospitalières (APHEA-1)

- Asthme
 - Enfants <15 ans

```
- Particules et SO_2 3 - 8% (50 \mug/m<sup>3</sup>)

- NO_2 et O_3 1 - 3% (50 \mug/m<sup>3</sup>)
```

• Adultes 15 - 64 ans

```
- Particules et SO_2 1 - 2% (50 \mug/m<sup>3</sup>)

- NO_2 et O_3 1 - 3% (50 \mug/m<sup>3</sup>)
```

Broncho-pneumopathies chroniques obstructives

```
- Particules et SO_2 2 - 4% (50 μg/m³)

- NO_2 1 - 2% (50 μg/m³)

- O_3 3 - 4% (50 μg/m³)
```

- Mortalité (APHEA-1, Katsouyanni et al, 1996)
 - Mortalité totale
 - Particules et SO_2 3% (50 μ g/m³)
 - NO_2 and O_3 1 3% (50 μ g/m³)
 - Mortalité respiratoire
 - Particules et SO_2 4 5% (50 μ g/m³)
 - O_3 4% (50 μ g/m³)
 - Mortalité cardio-vasculaire
 - Particules et SO_2 **2 4%** (50 µg/m³)
 - NO_2 et O_3 1 2% (50 μ g/m³)

Table 2. Short-term effects of PM10 and PM2.5 on mortality and hospitalisations from worldwide multi-city studies in 1997 to 2013

Study	First author [ref.]	Year	Locations	Time period		PM10			PM2.5	
					Exposure and age group	Mortality increase %	Hospitalisation increase %	Exposure and age group	Mortality increase %	Hospitalisation increase %
APHEA	Katsouyanni [62]	1997	12 cities in Europe	1975-1992	50 µg·m ⁻³	Natural 2.2 (1.3-3.1)		Black smoke 50 µg·m ⁻³	Natural 1.3 (0.8-1.7)	
APHEA2	ATKINSON [65]	2001	8 cities in Europe	1988-1997	10 µg·m ⁻³			Black smoke 10 µg·m ⁻³		
APHEA2	A6A [63]	2003	29 cities in Europe		10 µg·m ⁻³	Natural 0.67 (0.47-0.87)		Black smoke 10 µg·m ⁻³	Natural 0.58 (0.32-0.84)	
					>65 years	Natural 0.74 (0.52-0.95)		>65 years	Natural 0.68 [0.43-0.92]	
APHEA2	ANALITIS [64]	2006	29 cities in Europe	1990-1997	10 μg·m ⁻³	CV 0.76 [0.47-1.05]		Black smoke 10 µg·m ⁻³	CV 0.62 (0.35-0.90)	
						Respiratory 0.71 (0.22-1.20	I		Respiratory 0.84 (0.11-1.57	1
					0-14 years		Asthma 1.2 (0.2-2.3)	0-14 years		Asthma 1.3 (0.3-2.4)
					>65 years		COPD 1.0 [0.4-1.5]	>65 years		COPD 0.2 (-0.7-1.1)
NMMAPS	DOMINICI [66]	2005	90 cities in USA	1997-2000	10 µg·m ⁻³	Natural 0.21 (0.09-0.21)				
NMMAPS	Dominici [67]	2006	90 cities in USA	1999-2002	10 µg·m ⁻³		Heart failure 1.28 (0.78-1.78)			
					>65 years		Respiratory infections 0.92 (0.41–1.43) COPD 0.91 (0.18–1.64) Cerebrovascular diseases 0.81 (0.30–1.32)			
APHENA	SAMOLI [68]	2008	90 cities in USA		10 μg·m ⁻³	Natural 0.29 (0.18-0.40)				
					>74 years	Natural 0.47 (0.31-0.63)				
			32 cities in Europe			Natural 0.33 (0.22-0.44)				
					>74 years	Natural 0.44 (0.29-0.58)				
			12 cities in Canada			Natural 0.84 (0.30-1.40)				
					>74 years	Natural 1.00 (0.25-1.80)				
PAPA	Wong [69]	2008	4 cities in Asia [south east coast]	1996-2004	10 μg·m ⁻³	Natural 0.55 (0.26-0.85)				
						CV 0.58 (0.22-0.93)				
						Respiratory 0.62 (0.22-1.02	1			
ESCALA	Rомієи [71]	2012	9 cities in Latin America	1997-2005	10 µg·m ⁻³	Natural 0.77 (0.60-1.00)				
						CV 0.72 (0.54-0.89)				
						Respiratory 1.39 (0.98-1.81)			

OUTDOOR AIR POLLUTION | A. FAUSTINI ET AL.

Acute Effects of Ambient Particulate Matter on Mortality in Europe and North America: Results from the APHENA Study

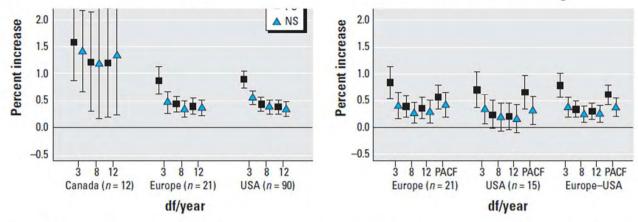


Figure 2. Percent increase in the daily number of deaths, among those \geq 75 years of age, associated with a 10- μ g/m³ increase in PM₁₀: lag 1 (*A*) and lags 0 and 1 (*B*) for all three centers. PACF indicates df based on minimization of PACF.

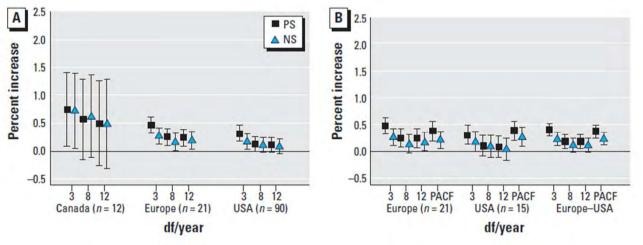
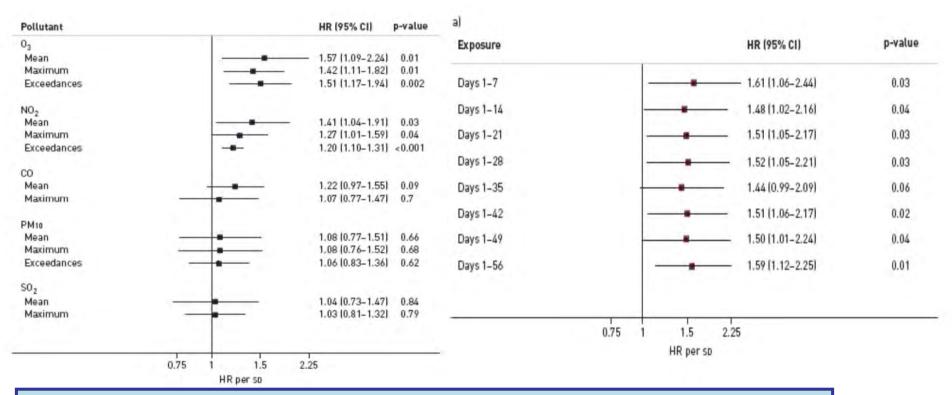


Figure 3. Percent increase in the daily number of deaths, among those < 75 years of age, associated with a $10-\mu g/m^3$ increase in PM₁₀: lag 1 (A) and lags 0 and 1 (B) for all three centers. PACF indicates df based on minimization of PACF.

Corrélation avec l'âge et le Niveau SE

Pollution atmosphérique : un nouveau trigger d'exacerbation aigue de FPI ?


TABLE 1 Baseline patient characteristics

Characteristic	Acute exacerbation	No acute exacerbation	p-value#
Subjects n	75	361	
Age years	63.7±8.4	62.8 ±7.9	0.29
Females	17 (23)	74 (20)	0.67
Smoking status			
Never	26 (35)	89 (25)	
Former	32 (43)	177 (49)	0.20
Current	17 (22)	95 (26)	
FVC % predicted	69.3±17.7	78.1 ± 17.6	< 0.001
DLCO % predicted	62.5 ± 19.3 [¶]	67.1 ± 19.2+	0.11
Prednisone	56 (74.7)	202 (56.0)	0.003
GORD treatment ⁵	57 (76.0) ^f	192 (53.2)	< 0.001

Data are presented as mean \pm so or n (%), unless otherwise stated. FVC: forced vital capacity; DLCO: diffusing capacity of the lung for carbon monoxide; GORD: gastro-oesophageal reflux disease. **: overall tests of heterogeneity; *\frac{1}{2}: n=58; \frac{1}{2}: n=338; \frac{1}{2}: proton pump inhibitor or histamine 2 receptor (H₂)-antagonist; \frac{1}{2}: 11 out of 57 on proton pump inhibitor, 46 out of 57 on H₂-antagonist.

Pollution atmosphérique :

un nouveau trigger d'exacerbation aigue de FPI?

Premier article sur le sujet, mais étude monocentrique (Corée du sud) méthodologie de l'évaluation de l'exposition à la pollution atmosphérique, et facteurs d'ajustement (CVF), peu détaillés. Pas d'effet sur la mortalité ? impact uniquement avec O3 et NO2, les PM10 ont été étudiées mais pas les PM 2.5

BPCO et pollution

- Pour 10ug/m3 de PM10
- Augmentation des hospitalisations pour exacerbations
 - 1% en Chine et en EU
 - 2% aux USA
- Augmentation de la mortalité à court-terme
 - De 6% en EU, 1% auxUSA et Chine

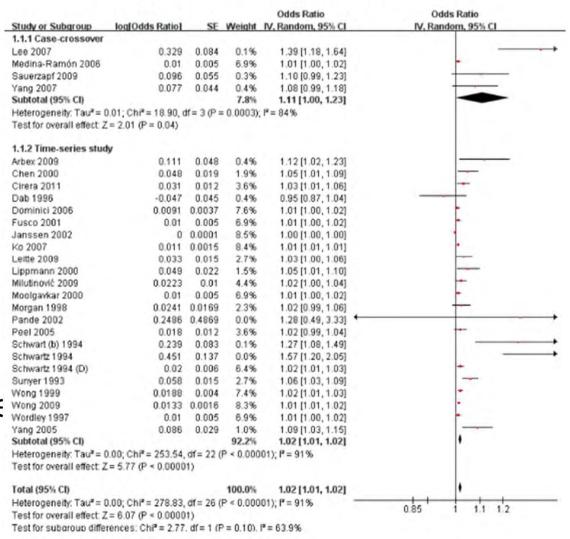
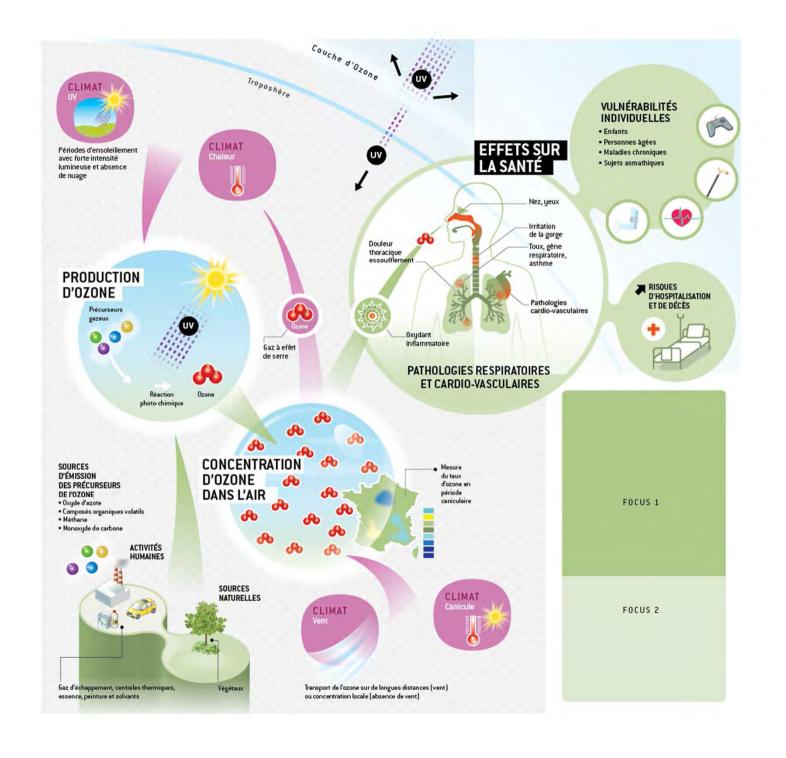


Figure 3. The effect of outdoor air pollution on COPD hospital admission.

Song et al.

Int. J. Environ. Res. Public Health 2014, 11

Vivre à proximité de champs traités augmente le risque de symptômes respiratoires chez l'enfant n=3291


Exposure type	Residential	Domestic	Para-occupational	Any exposure
Respiratory disease		10 27	Tracks (*)	
OR _a	1.82***	1.77***	1.85**	1.71**
95% CI	(1.28-2.59)	(1.28-2.43)	(1,13-3,02)	(1.20-2.43)
Asthma	1 2000 000 000			
OR _a	2.10*	1.99*	4.61***	1.73**
95% CI	(1.01-4.42)	(1.00-3.99)	(2.06-10.29)	(1.02-2.97)
Chronic cough				
OR _a	1,17	1.00	0.95	1.04
95% CI	(0.86-1.59)	(0.79-1.28)	(0.62-1.45)	(0.82-1.33)
Chronic phlegm				77.7473.711
OR _a	1.59*	1.96***	2.56***	1,90**
95% CI	(1.03-2.45)	(1.32-2.92)	(1.56-4.21)	(1.26-2.87)
Recurrent wheezing				
OR _a	2.73***	1.49*	1.57*	2.10***
95% CI	(1.85-4.05)	(1.03-2.16)	(0.92-2.72)	(1.39-3.18)
Ever wheezing				
OR _a	2.55***	1.50**	1.73*	1.99***
95% CI	(1.84-3.52)	(1.12-2.01)	(1.09-2.74)	(1.43-2.78)

Adjustments were made for passive smoking, sex, age, weight and body mass index, father's and mother's respiratory disease, father's and mother's educational levels, animal raising, and playing with dust. Residential: regional exposure or near a treated field; domestic: domestic use by a household member or treatment of the house and garden by a professional; para-occupational: occupational use by a household member; any exposure: residential, domestic or para-occupational exposure; OR_a: adjusted odds ratio. CI: confidence interval. *: p<0.05; **: p<0.01; ***: p<0.001.

P.R. Salameh*, I. Baldi*, P. Brochard*, C. Raherison*, B. Abi Saleh*, R. Salamon*

Imprégnation biologique chez les enfants vivant à proximité de champs traités

- ◆ Etude prospective américaine
- ♦ N=100 agriculteurs
- N=100 résidents à proximité de champs de maïs traités par des herbicides (adultes et enfants)
- Questionnaire sur la santé
- ◆ Dosages des métabolites urinaires des herbicides : Azinphos-méthyl et Phosmet
- → la quantité de métabolites urinaires diminue avec l'éloignement du lieu de résidence/champ traités

Les points clés

- Effets démontrés à court terme
 - Associations significatives entre pollution atmosphérique et différents indicateurs sanitaires
 - mortalité
 - hospitalisations
 - consultations
 - symptômes
 - Pathologies respiratoires
 - Pathologies cardio-vasculaires
- Composition variable des particules selon les sources d'émission

Merci de votre attention

