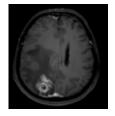
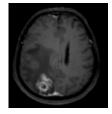
STRASBOURG (France) 16-19 novembre 2015

COURS EUROPEEN INTERUNIVERSITAIRE EN ONCOLOGIE THORACIQUE


Chirurgie et radiothérapie des métastases cérébrales des CBNPC : quand et comment ?

Delphine ANTONI Centre Paul Strauss - Strasbourg



Les métastases cérébrales (MC)

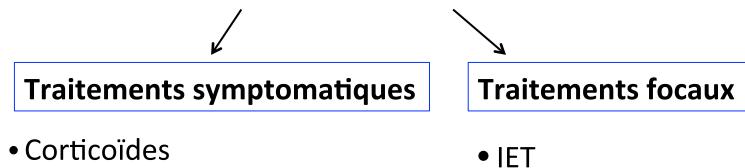
- 1^{ère} cause de tumeur maligne intracérébrale
- 20 à 40% des patients cancéreux développent des MC
- Cancer broncho-pulmonaire (40-60%), sein (12-17%), mélanome (5-9%), côlon rectum (8-13%), rein (5-11%)
- Pronostic sombre: Survie médiane de 1 mois sans traitement, 7 mois en cas de traitement

CBNPC et métastases cérébrales:

- SWOG trials Gaspar (2005): 422 patients: maladie avancée 64%
- Maladie avancée: 26% progression cérébrale (20% cerveau seulement et 6% cerveau + autres)
- Apparition des MC: 22,5% sous traitement 24% à 16 sem après traitement 14% de 16 sem à 6 mois 22,5% de 6 à 12 mois 17% ap 12 mois
- Jeune âge, histologie non épidermoïde
- CBNPC stade 3: risque de MC à 1 an: 18% (Gore 2011)

• Irradiation de l'encéphale en totalité (IET): traitement le plus fréquemment entrepris

• IET: responsable d'une toxicité neurocognitive à long terme

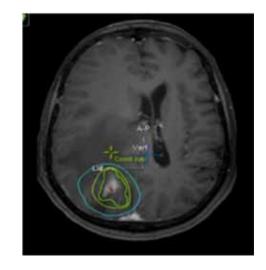

 Autres alternatives thérapeutiques: chirurgie, radiothérapie en conditions stéréotaxiques (RCS), nouveaux médicaments de chimiothérapie

• Le pronostic des patients est éminemment variable

• Mise en évidence de facteurs pronostiques significatifs permettant d'établir plusieurs scores (RPA, RPA II, BSBM, DS-GPA)

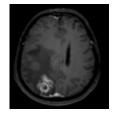
 Nécessité d'un traitement adapté à chaque patient: <u>ne pas surtraiter</u> les patients au pronostic sombre et <u>ne pas soustraiter</u> ceux au pronostic favorable

Traitement des MC


- Antiépileptiques
- Soins de support

- ' IE I
- Radiothérapie en conditions stéréotaxiques (RCS)
- Neurochirurgie
 Seule ou combinaison variable dépendante du site, taille et nombre de MC
- Chimiothérapie
- Radiosensibilisants
- Thérapies ciblées

Traitements systémiques


La radiothérapie en conditions stéréotaxiques

- <u>Définitions:</u>
- Conditions stéréotaxiques: précision millimétrique
- Fortes doses d'irradiation, doses dites ablatives
- Peu de séances
- En ambulatoire
- Objectifs:
- Augmenter le contrôle local
- Diminuer la morbidité

	Normofraction	Fortes doses	Doses ablatives
Dose par fraction (Gy)	1,8 à 2,2	2,2 à 8	>8

SCORES PRONOSTIQUES

Facteurs pronostiques:

- Jacot et al.: analyse multicentrique rétrospective de 231 patients CBNPC
- Facteurs pronostiques défavorables de survie à partir du diagnostic des MC:
- absence de contrôle de tumeur primitive
- sexe masculin
- OMS ≥ 2
- âge > 63 ans
- Na < 132 mmol/L
- NSE > 12,5 ng/ml

	RPA	RPA II	Rotterdam	SIR	BSBM	GPA	DS-GPA	Rades	GGS
СТР									
MEC									
IK									
Age									
Intervalle TP et MC									
Vol MC									
Nb MC									
Réponse corticoides									
Type primitif									
Nb patients	1200	3753	1292	65	110	1960	4259	1085	479
Traitement	IET	IET RCS	IET chirurgie	RCS	IET chirurgie RCS	IET RCS Radiosensi -bilisants	IET chirurgie RCS	IET	IET RCS

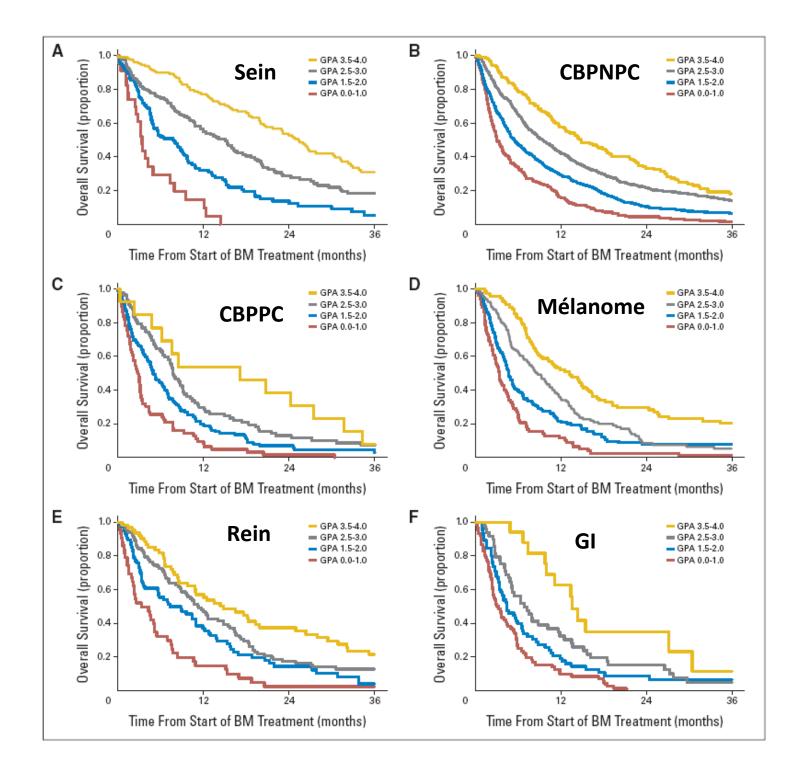
CTP: contrôle de la tumeur primitive, MEC: métastases extracrâniennes, IK: Indice de Karnofsky

Score RPA (Recursive Partitioning Analysis)

(de 1979 à 1993, Gaspar et al.) RPA I: 7,7 m; RPA II: 4,5 m; RPA III: 2,3 m

Score RPA	1	2	3
Age (années)	< 65	ni RPA 1	
ΙΚ	≥ 70	ni RPA 3	< 70
Maladie primitive	contrôlée		Non contrôlée
Métastases extra-crâniennes	absentes		présentes

RPA II subclass (Yamamoto et al.)


	0	1
ІК	90-100	70-80
Nombre de MC	1	>1
Contrôle de la tumeur primitive	Yes	No
Métastases extracrâniennes	No	Yes

0-1	2	3-4
RPA II-a	RPA II-b	RPA II-c

RPA II-a: 15,4 m RPA II-b: 8,4 m RPA II-c: 4,7 m

DS-GPA (Diagnosis-specific graded prognostic assessment indexes) (de 1985 à 2007) Sperduto et al.

Non-small-cell and small-cell	lung cancer		(GPA Scoring	Criteria	Patient
	Prognostic Factor		0	0.5	1.0	Score
	Age, years		> 60	50-60	< 50	
	KPS		< 70	70-80	90-100	
	ECM		Present	_	Absent	100-10
	No. of BM		>3	2-3	1	
	Sum total					
Median sur	vival (months) by GPA: 0-	1.0 = 3.0	0; 1.5-2.0	0 = 5.5; 2.5-3	.0 = 9.4; 3.5	5-4.0 = 14.8
Melanoma			(GPA Scoring	Criteria	Patient
	Prognostic Factor		0	1.0	2.0	Score
	KPS		< 70	70-80	90-100	
	No. of BM		> 3	2-3	1	
	Sum total					
Median sur	vival (months) by GPA: 0-	1.0 = 3.4	4; 1.5-2.0	0 = 4.7; 2.5-3	.0 = 8.8; 3.5	5-4.0 = 13.2
Breast cancer				GPA Scoring		Patient
	Prognostic Factor	0	0.5		.5 2.0	Score
	KPS	≤ 50		70-80 90-10		
	Subtype	Basal		LumA HER		
	Age, years	≥ 60	< 60	n/a n/	/a n/a	
	Sum total					
Median sur	vival (months) by GPA: 0-	1.0 = 3.4	4; 1.5-2.0) = 7.7; 2.5-3	.0 = 15.1; 3	.5-4.0 = 25.3
Renal cell carcinoma			(GPA Scoring	Criteria	Patient
	Prognostic Factor		0	1.0	2.0	Score
	KPS		< 70	70-80	90-100	
	No. of BM		> 3	2-3	1	
	Hol of Bill					
	Sum total					
Median sur		1.0 = 3.3	3; 1.5-2.0) = 7.3; 2.5-3	.0 = 11.3; 3	.5-4.0 = 14.8
Median sur GI cancers	Sum total	1.0 = 3.3	-) = 7.3; 2.5-3 GPA Scoring	-	
	Sum total	0	1		-	
	Sum total vival (months) by GPA: 0-		-	GPA Scoring	Criteria	Patient

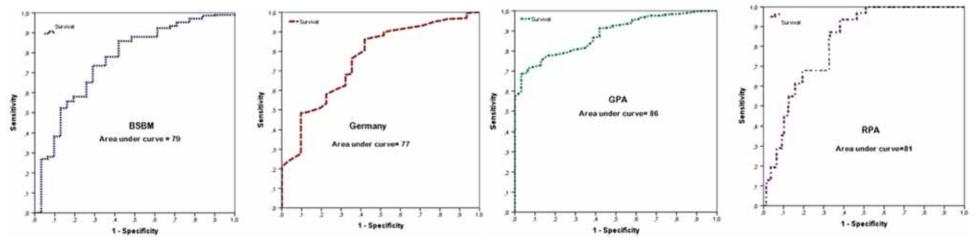
P<.001

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Т

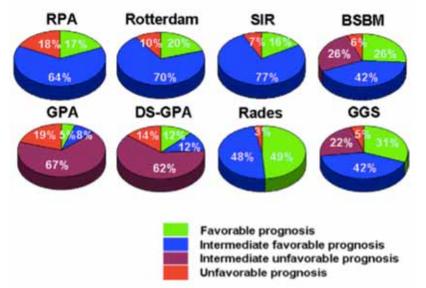
Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients With Brain Metastases


Paul W. Sperduto, Norbert Kased, David Roberge, Zhiyuan Xu, Ryan Shanley, Xianghua Luo, Penny K. Sneed, Samuel T. Chao, Robert J. Weil, John Suh, Amit Bhatt, Ashley W. Jensen, Paul D. Brown, Helen A. Shih, John Kirkpatrick, Laurie E. Gaspar, John B. Fiveash, Veronica Chiang, Jonathan P.S. Knisely, Christina Maria Sperduto, Nancy Lin, and Minesh Mehta

										I	DS-G	PA Score	9							
		Overall			0-1.0				1.5-2.0				2.5-3.0				3.5-4.0			
	Su	vival Time		Sun	vival Time			Surv	vival Time			Sur	vival Time			Su	rvival Time			
	(months)	No. of	(r	nonths)	Patie	ents	(n	months)	Patien	nts	(1	months)	Patier	nts	(months)	Patie	nts	Ρ
Diagnosis	Median	95% CI	Patients	Median	95% CI	No.	%	Median	95% CI	No.	% 1	Viedian	95% CI	No.	% M	ledian	95% CI	No.	%	(log-rank
NSCLC	7.00	6.53 to 7.50	1,833	3.02	2.63 to 3.84	264	14	5.49	4.83 to 6.40	705	38	9.43	8.38 to 10.80	713	40	14.78	11.80 to 18.80	161	9	< .001
SCLC	4,90	4.30 to 6.20	281	2.79	1.83 to 3.12	- 65	23	4.90	4 04 to 6 51	119	42	7.67	6.27 to 9.13	84	30	17.05	4.70 to 27.43	12	5	< 001

Quel est le score le plus performant ?

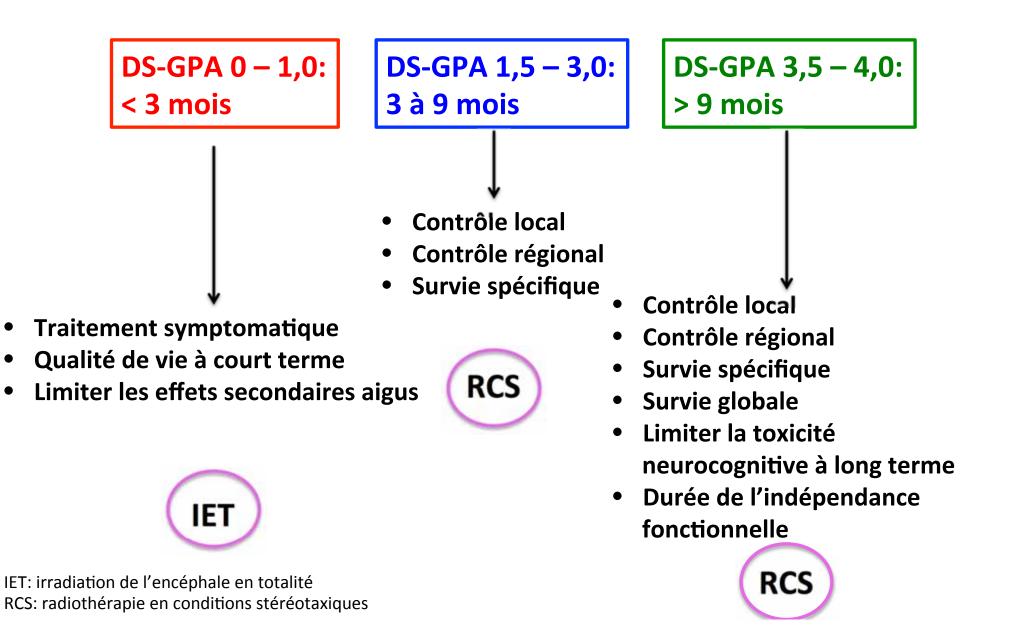
Viani et al. (IJROBP 2012):


- Etude rétrospective de 412 patients traités par IET seule (30 à 40 Gy en fractions de 2 à 3 Gy) ou IET et chirurgie (si une MC ≤ 3 cm)
- Comparaison de 5 indexes pronostiques (RPA, Rotterdam score, BSBM, GPA, Germany score)

- GPA: sensibilité supérieure en termes de prédiction de survie
- IK et présence de MEC: facteurs les plus importants
- Age et contrôle de la tumeur primitive: facteurs ayant le moins d'impact

Zindler et al. (Radiother Oncol 2013):

- Analyse de 380 patients avec 536 MC (1 à 3 MC) traités par RCS de 2002 à 2011
- RCS: 15, 18 ou 21 Gy en 1 fr ou 24 Gy en 3 fr de 8 Gy


Prediction of early death (<3 months) and long-term (>12 months) survival by eight prognostic scoring systems.

	Prediction	of early death	i (≼3 months)	for unfavorable	classes		Prediction of	f long-term sui	rvival (≥12 mo	nths) for favorat	ole classes	
	N (%)	OS (mos)	Sensitivity	Specificity	PPV	NPV	N (%)	OS (mos)	Sensitivity	Specificity	PPV	NPV
RPA	70 (18%)	3.2	0.38	0.88	0.50	0.81	66 (17%)	15.0	0.29	0.89	0.59	0.70
Rotterdam	37 (10%)	3.1	0.20	0.03	0.49	0.79	76 (20%)	13.4	0.31	0.86	0.54	0.70
SIR	25 (7%)	3.0	0.16	0.96	0.50	0.81	62 (16%)	14.7	0.27	0.90	0.59	0.70
BSBM	21 (6%)	4.1	0.11	0.96	0.48	0.78	99 (26%)	13.5	0.39	0.81	0.53	0.72
GPA	74 (19%)	4.9	0.35	0.85	0.43	0.81	19 (5%)	24.3	0.10	0.98	0.74	0.67
DS-GPA	49 (14%)	5.0	0.24	0.90	0.37	0.82	41 (12%)	15.6	0.19	(0.93)	0.59	0.70
Rades	12 (3%)	2.6	0.08	0.90	0.58	0.77	186 (49%)	13.4	0.69	0.02	0.49	0.79
GGS	20 (5%)	2.6	0.12	0.97	0.55	0.78	117 (31%)	15.0	0.49	0.79	0.56	0.75

Sperduto et al.: JCO 2012

											DS-G	PA Sco	re							
		Overall			0-1.0				1.5-2.0				2.5-3.0				3.5-4.0			
		rvival Time (months)	No. of	200100	vival Time nonths)	Patie	ents		rvival Time (months)	Patier	nts	1973	urvival Time (months)	Patier	nts	275	rvival Time (months)	Patie	ants	Ρ
Diagnosis	Median	95% CI	Patients	Median	95% CI	No.	%	Median	95% CI	No.	% !	Median	95% CI	No.	%	Median	95% CI	No,	%	(log-rank
NSCLC	7.00	6.53 to 7.50	1,833	3.02	1.63 to 3.84	254	1	5.49	.83 to 6.40	705	38	9.43	8.38 to 10.80	713	40	14.78	1.80 to 18.80	161	9	<.001
SCLC	4.90	4.30 to 6.20	281	210	1.83 to 3.12	65	23	4.00	4.04 to 6.51	119	42	101	6.27 to 9.13	84	30	17.00	4.70 to 27.43	13	5	<.001
Melanoma	6.74	5.90 to 7.56	481	3 38	2.53 to 4.27	84	17	4.70	4.07 to 5.39	150	31	8 77	6.74 to 10.77	135	28	13.23	9.13 to 15.64	112	23	<.001
RCC	9.63	7.66 to 10.91	286	3 27	2.04 to 5.10	43	15	7.29	3.73 to 10.91	76	27	1 27	8.80 to 14.80	104	36	14.77	9.73 to 19.79	63	22	< .001
Breast cancer	13.80	11.53 to 15.87	400	3.35	3.13 to 3.78	23	6	7.70	5.62 to 8.74	104	26	15.07	12.94 to 15.87	140	35	25.30	23.10 to 26.51	133	33	<.001
GI cancer	5.36	4.30 to 6.30	209	1.13	2.37 to 4.57	76	36	4.40	3.37 to 6.53	65	31	6.87	4.86 to 11.63	50	24	13.54	9.76 to 27.12	18	9	<.001
Other	6.37	5.22 to 7.49	450	-		-	-	-	—	-		-		$\sim - 1$	-	-	-2	$\sim - 1$		-
Abbreviatio	7.16 ns: DS-	6.83 to 7.52 GPA, diagnos	3,940 sis-speci	3.10 fic Gra	2.83 to 3.45 ded Progno	545 ostic /	16 Asse		4.90 to 5.89	1,219 non-s	-	9.63 -cell lu	8.74 to 10.58 ung cancer; R	1,226 CC, re		-	14.65 to 18.80	500 .C, sr	14 nall-	
Abbreviatio											-	-cell lu	ung cancer; R	CC, re	nal	cell car	rcinoma; SCL	.C, sr	nall-	
Abbreviatio ancer.	ns: DS-		sis-speci	fic Gra	ded Progno	ostic /	Asse	essme			-	-cell lu		CC, re	nal	cell car	rcinoma; SCL	.C, sr	nall-	cell lun
ancer.	ns: DS-	-GPA, diagno:	sis-speci	fic Gra	ded Progno	ostic /	Asse	essme			-	-cell lu	ung cancer; R	CC, re	nal	cell car	rcinoma; SCL	.C, sr	nall-	cell lun

Objectifs de traitement

PLACE DE L'IET ? QUELLE DOSE ? PLACE DE LA RADIOTHERAPIE EN CONDITIONS STEREOTAXIQUES (RCS) PLACE DE LA CHIRURGIE

Doses IET

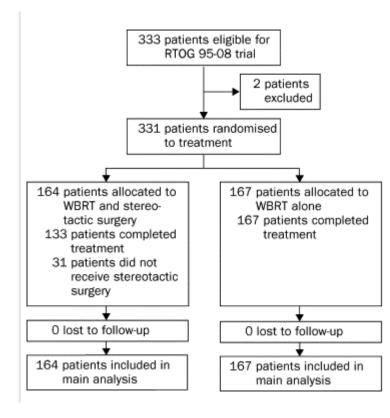
• 20 Gy en 5 fractions de 4 Gy

- Référence Allemande (Rades et al.)
- Équivalent à 30 Gy en 10 fr
- 30 Gy en 10 fractions de 3 Gy
 - Référence
 - Schéma le plus employé en France
- 37,5 Gy en 15 fractions de 2,5 Gy
 - Meilleure médiane de survie dans les essais RTOG

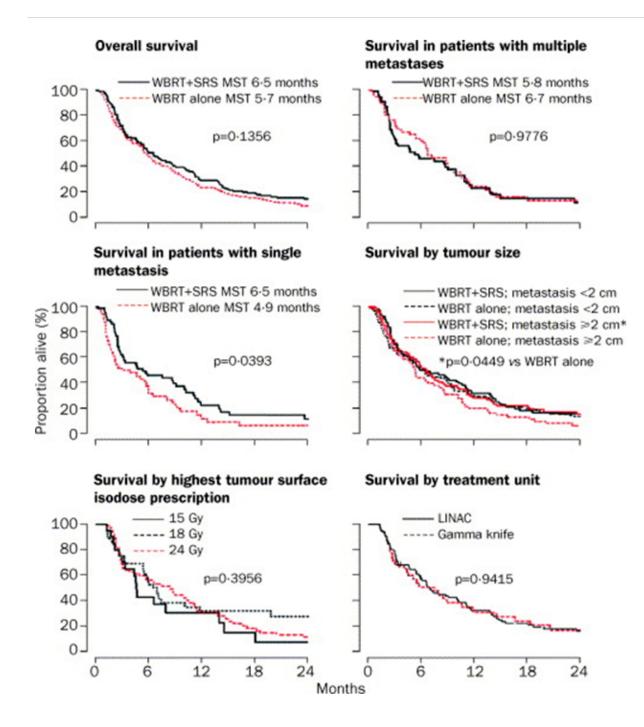
IET: le fractionnement RTOG Essais randomisés

	DGy	dGy	fr	t (sem)	SM (m)	EV.Neurol.
<u>6901 (1980)</u>	30	3	10	2		
910 pts	30	2	15	3	4	
	40	2,6	15	3	NS	49%
	40	2	20	4	\smile	
<u>7361 (1980)</u>	20	4	5	1		
902 pts	30	3	10	2	3,5	
	40	2,6	15	3	NS	31%
<u>7606 (1981)</u>	30	3	10	2	4	
255 pts	50	2,5	20	4	NS	30%

30Gy délivrés en 3Gy /fr, 10fr et 2 semaines: traitement le plus souvent employé


RCS vs IET

	Kocher et Comparais	al (2004) son non rand	omisée	Rades et al (2007) Analyse rétrospective				
Critères d'inclusion	1-3MC			1-3MC, n=18 RPA I ou II	6			
	RCS (20Gy)	IET (30-36Gy)	р	RCS (18-25Gy)	IET (30-40Gy)	р		
n	117	138		95	91			
SM (mois) RPA I	25.4	4.7	<0.0001					
SM (mois) RPA II	5.9	4.1	0.04	13	7	NS		
SM (mois) RPA III	4.2	2.5	NS					
CL à 1 an				59	26	SS		


RCS vs RCS + IET: 3 essais contrôlés prospectifs randomisés

	Aoyan N=132	na et al. (2 2	2006/07)	Chang N=58	et al. (2009)		Kocher et al. EORTC N=353	C trial (2011)	
Critères d'inclusion	1-4 M ≤3cm KPS≥7	-		1-3 M KPS≥7	-		,	ou ≤2.5cm (multiple) die locale contrôlée	
Objectif primaire	SG, ne	eurocogn	ition	Neuro	ocognition		Indépendance fon	ctionnelle (OMS >2)	
	RCS	RCS +IET	р	RCS	RCS+IET	р	RCS/chirurgie seule	RCS/chirurgie+IET	р
n	67	65		30	28		179 (100RCS)	180 (99RCS)	
Survie médiane	8.0	7.5	0.42	15.2	5.7	0.003	10.7	10.9	0.89
(mois)									
SG 1 an (%)	28	39	0.42	63	21	0.003			
CL 1 an (%)	73	89	0.002	67	100	0.012			
Récidive cérébrale	76	47	<0.001	73	27	<0.001	78	48	<0.001
à 1 an (%)	-								
Cause	19	23	0.64			NS	44	28	<0.002
neurologique de décès (%)									
Traitement de sauvetage (%)	43	15	<0.001	87	7	SS	31	3	SS
Temps médian OMS (mois)							10	9.5	0.71

RCS + IET vs IET seule: Andrews et al. Lancet 2004: Essai prospectif randomisé

	WBRT+stereotactic surgery (n=164)	WBRT alone (n=167)
Age (mean [range]) (years)	58.8 (19-82)	59.9 (24-90)
<65	109 (66%)	101 (60%)
≥65	55 (34%)	66 (40%)
Largest metastasis		
<2 cm	83 (50-5%)	98 (59%)
>2 cm to ≤3 cm	57 (35%)	45 (27%)
>3 cm to ≤4 cm	24 (14-5%)	24 (14%)
Men	86 (52%)	89 (53%)
Histological status		
Squamous	19 (12%)	19 (11%)
Adenocarcinoma	84 (51%)	78 (47%)
Large cell	27 (16%)	25 (15%)
Small cell	14 (9%)	10 (6%)
Melanoma	7 (4%)	7 (4%)
Renal	5 (3%)	5 (3%)
Other	5 (8%)	11 (7%)
Information missing	0	1 (<1)
Primary tumour site		
Breast	15 (9%)	19 (11%)
Lung	105 (64%)	106 (63%)

RCS, chirurgie et IET

- Chirurgie: absence d'histologie, MC > 3cm, menace du pronostic vital

- Même en cas de résection chirurgicale complète: jusqu'à 85% de récidive locale

- Chirurgie + IET augmente SG comparé à l'IET seule ou la chirurgie seule (Patchell et al., Vecht et al.)

- Rades et al: 206 patients RPA I ou II avec 1 à 2 MC: RCS + IET vs chirurgie + IET: pas de différence en terme de SG ou CL

- Kocher et al : RCS ou chirurgie + IET vs RCS ou chirurgie seule: augmentation du CL, pas de différence en terme de SG ou d'indépendance fonctionnelle

RCS du lit opératoire: Gans et al.

The role of Radiosurgery to the tumor bed after resection of brain metastases

Author, Year	Patients,	Median Follow-up, mo	RPA Class I, %	RPA Class II, %	RPA Class III, %	GTR, %	Median Margin Dose, Gy	Median OS, mo	Crude LC, %	1-y	Distant Recurrence, %	Salvage WBRT, %	Complications %
Do et al, ¹⁶ 2009	30	NR	20	77	3	NR	NR	12	87	NR	63	47	33.2
Hwang et al,17 2010	25	NR	NR	NR	NR	95	NR	15	100	100	28	NR	NR
Iwai et al,18 2008	21	NR	NR	NR	NR	86	NR	20	76	82	48	NR	5
Jagannathan et al, 19 2009	47	10	NR	NR	NR	100	NR	11	94	NR	NR	21	11
Jensen et al, ²⁰ 2010	106	NR	NR	NR	NR	96.4	17	10.9	80	80	65	42.7	7
Kalani et al, ²¹ 2010	68	13.2	NR	NR	NR	NR	15	13.2	80	NR	60	NR	NR
Karlovits et al,22 2009	52	13	42	58	0	NR	15	15	93	NR	NR	30	NR
Kelly et al,23 2010	17	12.7	24	76	0	94	18	NR	89	NR	35	24	0
Kresl et al,24 2003	61	18.3	7	77	16	52	16	14.9	70	NR	34	23	2
Limbrick et al,25 2009	15	20	53	40	7	80	20	20	73	NR	60	40	NR
Mathieu et al, ²⁶ 2008	40	13	23	68	10	80	16	13	73	74	54	16	11
Beal et al,27 2009	40	10.3	NR	NR	NR	NR	18	12.9	75	NR	NR	32	NR
Pieper et al, ²⁸ 2008	35	NR	NR	NR	NR	NR	15	NR	NR	93%	NR	NR	NR
Soltys et al,29 2008	72	8.1	28	68	4	85	18.6	15.1	86	79	44.4	19	10
Mean	45	13.2	27	65	9.4	85	17	14.4	83	85	49	29	9
Median	40	13	24	68	8.4	86	17	14	80	81	53	27	8

GTR, gross total resection; LC, local control; NR, not reported; RPA, recursive partitional analysis; OS, overall survival; WBRT, whole-brain radiotherapy.

- Thérapie efficace pour prévenir la récidive

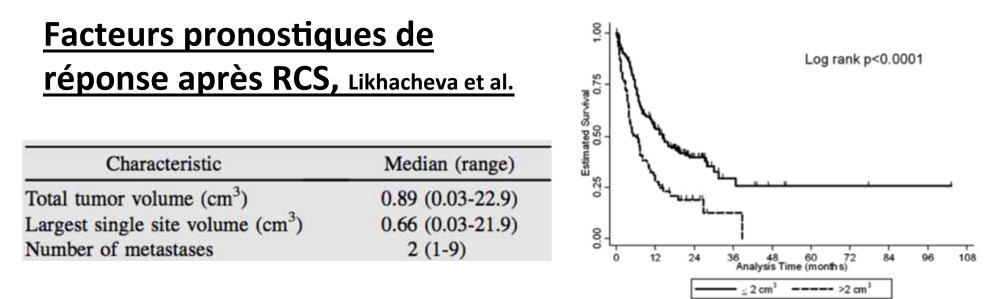
- Durée du traitement plus courte (amélioration de la compliance, mise en route plus rapide du traitement systémique)

	Total No. of Patients	Treatment									
Diagnosis		WBRT	SRS	WBRT + SRS	S + SRS	S + WBRT	S + WBRT + SRS				
NSCLC	1,833										
Risk of death†											
HR		1.0	0.62‡	0.54‡	0.48‡	0.48‡	0.39‡				
95% CI			0.51 to 0.74	0.46 to 0.64	0.34 to 0.68	0.40 to 0.57	0.27 to 0.55				
P			< .001	< 001	< 001	< 001	< 001				
Median survival (months)		3.53	9.86	12.72	11.86	11.66	12.06				
Patients				1111200010110							
No.		768	395	339	58	212	61				
%		42	22	18	3	12	3				
SCLC	281										
Risk of death†											
HR		1.0	0.97	0.24‡	0.00	0.42‡	0.00				
95% CI			0.41 to 2.26	0.10 to 0.59	NA	0.25 to 0.73	NA				
P			.94	.002	.99	.002	.98				
Median survival (months)		4.24	6.90	15.23	12.02	14.66	14.95				
Patients											
No.		229	13	21	1	16	1				
%		81	5	7	0.4	6	0.4				

<u>Sperduto et al (JCO 2012)</u>: Quel que soit le traitement autre que l'IET seule, la survie globale est augmentée.

RADIOTHÉRAPIE EN CONDITIONS STÉRÉOTAXIQUES (RCS)

Indications:


- 3 à 5 métastases cérébrales......≤10 (vol cumulé)? Yamammoto et al.
- Exclusive ou combinée à l'IET
- Taille \leq 3cm
- RCS monofractionnée ou radiochirurgie si MC ≤ 1 cm
- RCS fractionnée si MC > 1 cm (1 à 6 fractions)

COMMENT ÉLARGIR LES INDICATIONS?

MC > 3 cm de \emptyset

- <u>Han et al.</u>: $MC > 14 \text{ cm}^3$
 - Dose marginale minimale 11-12 Gy (monofraction)
 - Risque de complication
- RCS hypofractionnée nécessaire
 - taux de CL identique
 - risque toxique diminué

de métastases

	Overall survival				Local c	ontrol	D	istant brai	Comparison	
Variable	HR	P value	95% CI	HR	P value	95% CI	HR	P value	95% CI	group
Total lesion volume >2	1.98	<.001	1.4-2.81)	4.56	.016	(1.32-15.74)	0.67	.10	(0.42-1.08)	Total treatment volume ≤ 2
Age ≥ 60 (y)	1.67	.002	(1.2-2.33)	0.89	.85	(0.26-3.06)	1.25	.25	(0.86-1.83)	<60 y
Baseline DS-GPA	0.71	<.001	(0.59-0.85)	2.33	.05	(1.02 - 5.30)	1.01	.90	(0.82-1.24)	Continuous
\geq 4 lesions	1.41	.17	(0.86-2.32)	4.01	.13	(0.66-24.42)	1.02	.97	(0.5-2.08)	1-3 sites
Extracranial disease	4.20	<.001	(2.04-8.68)	0.80	.72	(0.24 - 2.71)	2.15	.011	(1.19-3.9)	No

Abbreviations: CI = confidence interval; DS-GPA = diagnosis-specific graded prognostic assessment; HR = hazard ratio.

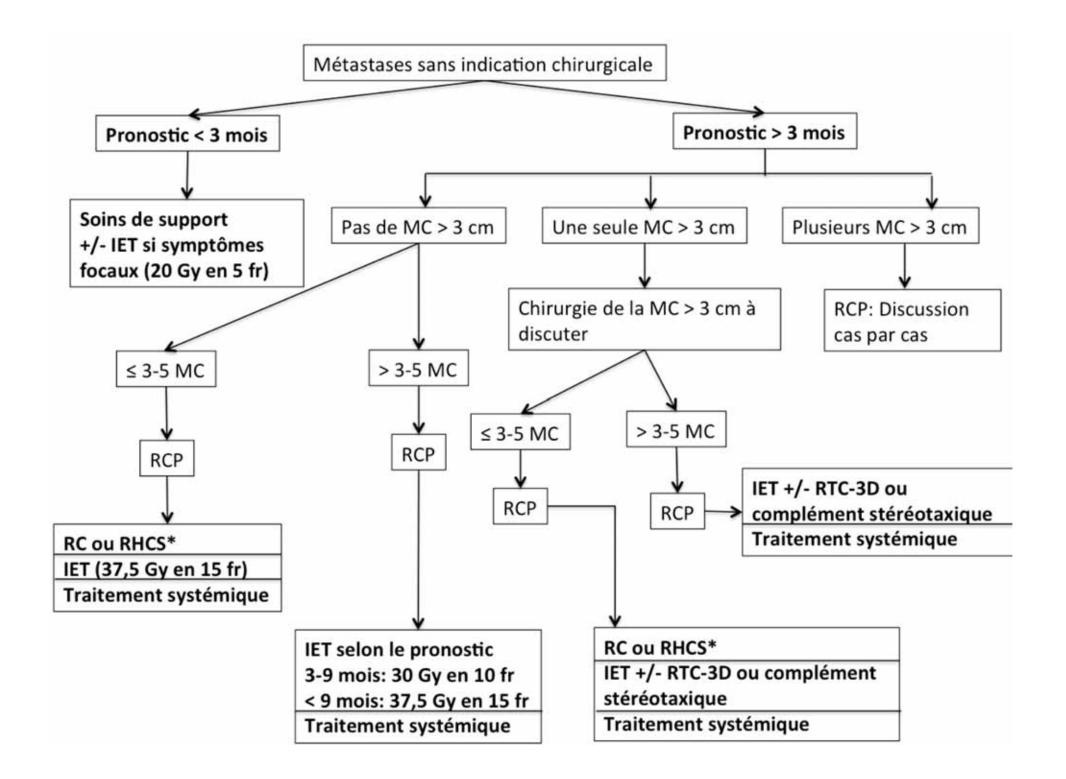
de métastases > 5

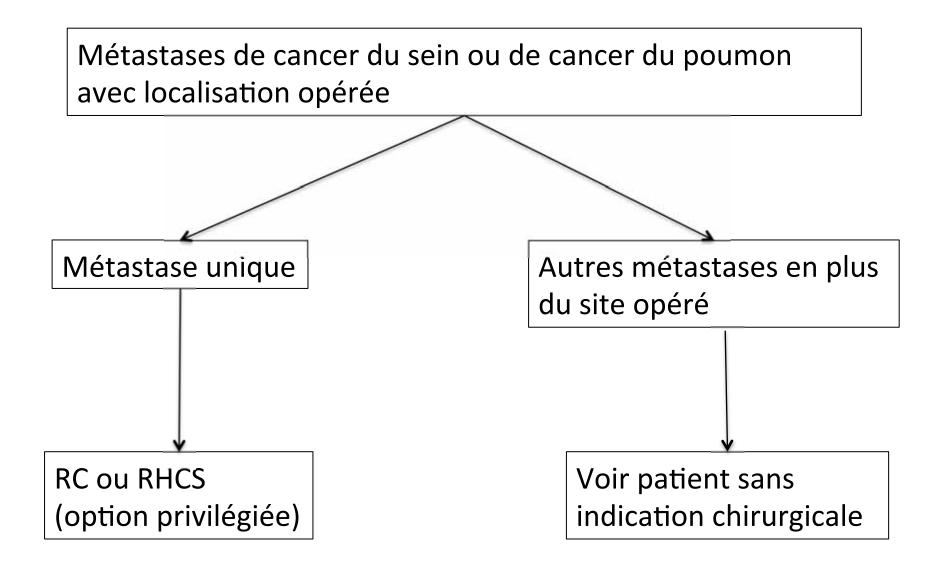
Treatment of Five or More Brain Metastases With Stereotactic Radiosurgery

Grant K. Hunter, M.D.,* John H. Suh, M.D.,* Alwyn M. Reuther, M.P.H.,* Michael A. Vogelbaum, M.D., Ph.D.,[†] Gene H. Barnett, M.D.,[†] Lilyana Angelov, M.D.,[†] Robert J. Weil, M.D.,[†] Gennady Neyman, Ph.D.,* and Samuel T. Chao, M.D.*

Center	n	Median no. of lesions (range)	WBRT (prior/post, salvage) (%)	Median OS (mo)	KPS	Multiple histology
Cleveland clinic	64	6 (5-10)	77 (63/14)	7.5	80 (median)	Yes
Kyungpook National University	14	5.9 (mean, range not reported)	0	8	\geq 70 (all pts)	No, only lung
University of Pittsburgh	205	5 (4-18)	84 (46/38)	8	≥70 (85%)	Yes

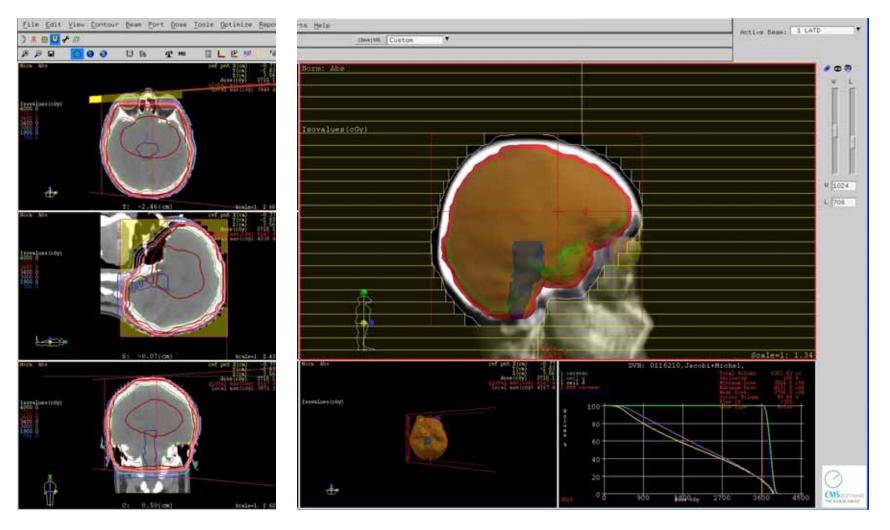
Abbreviations: OS = overall survival; pts = patients. Other abbreviation as in Table 1.


- RCS +/- IET
- Pas de diminution en termes de SG par rapport à 1 à 4 MC (Aoyama et al.)
- Absence d'influence du nombre de MC (> 5) sur la SG


REIRRADIATION

Réirradiation possible

- Nombre de MC
- Délai écoulé depuis la première irradiation
- IK
- Statut de la maladie extracrânienne
- Volonté du patient
- RCS de manière itérative possible: 25 métastases ou plus de diamètre < 1 cm : risque encéphalique faible (Shuto et al.)
- Réirradiation de l'encéphale en totalité possible, privilégier 25Gy en 10fr ou 20Gy en 5fr, à discuter avec le patient

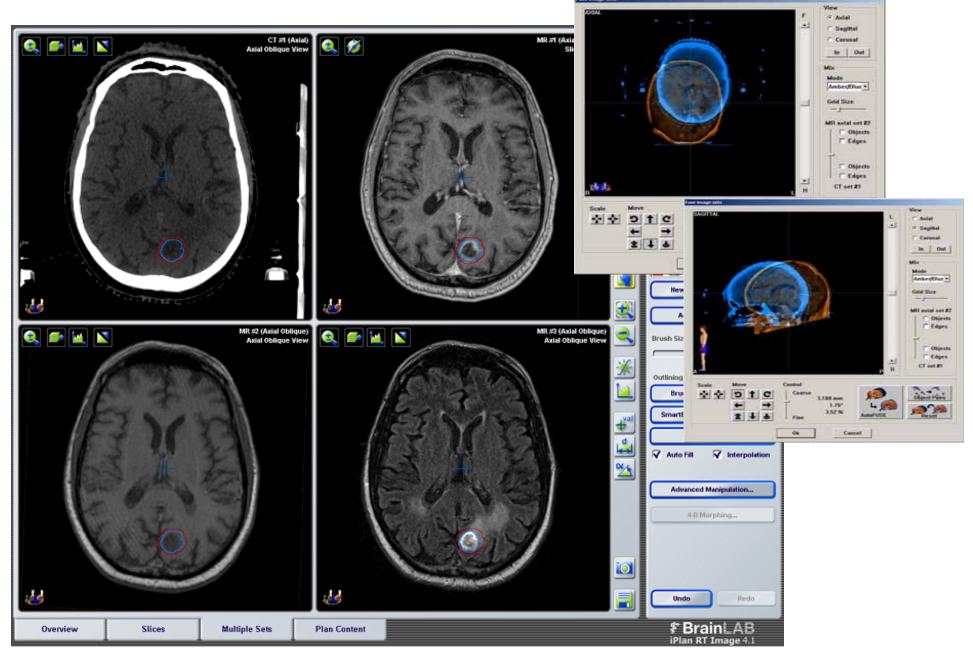

RECOMMANDATIONS ANOCEF 2015

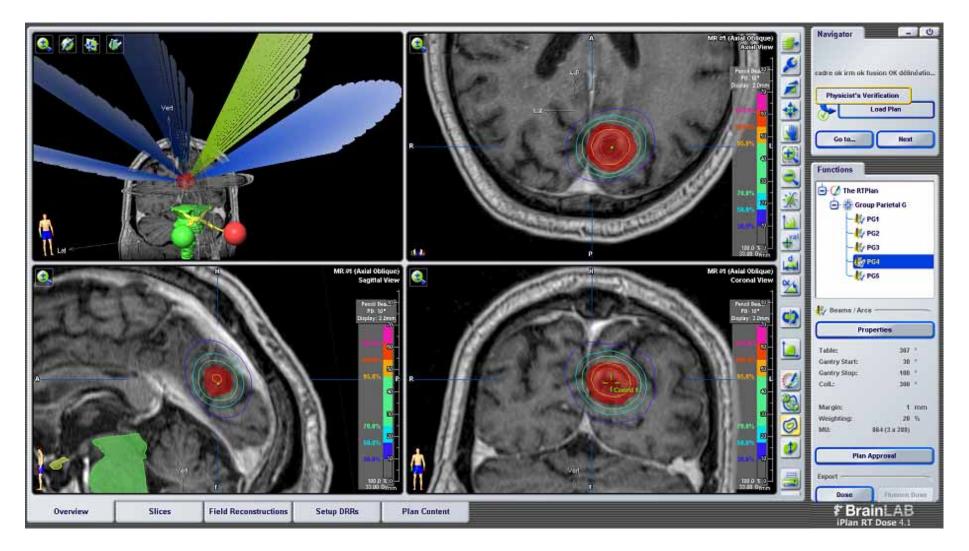
EN PRATIQUE

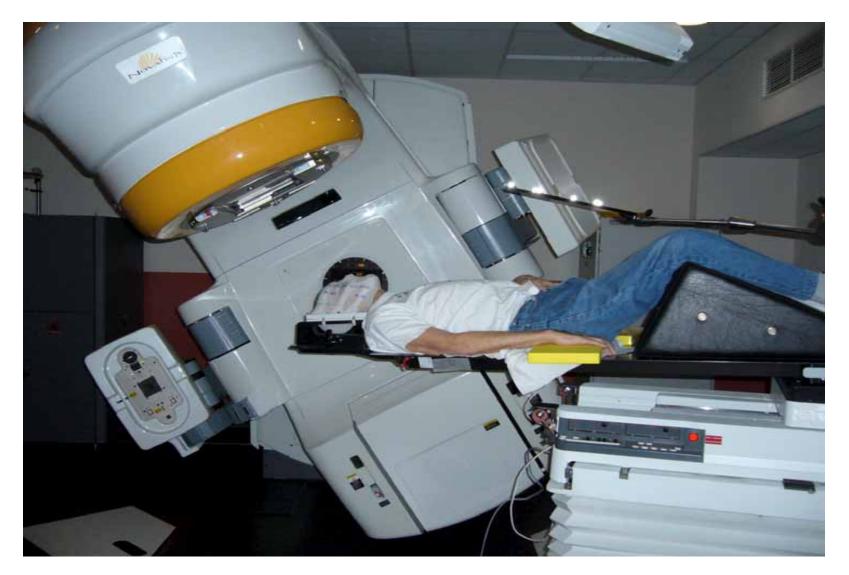
IET: planification de traitement

2 faisceaux opposés, 6 MV

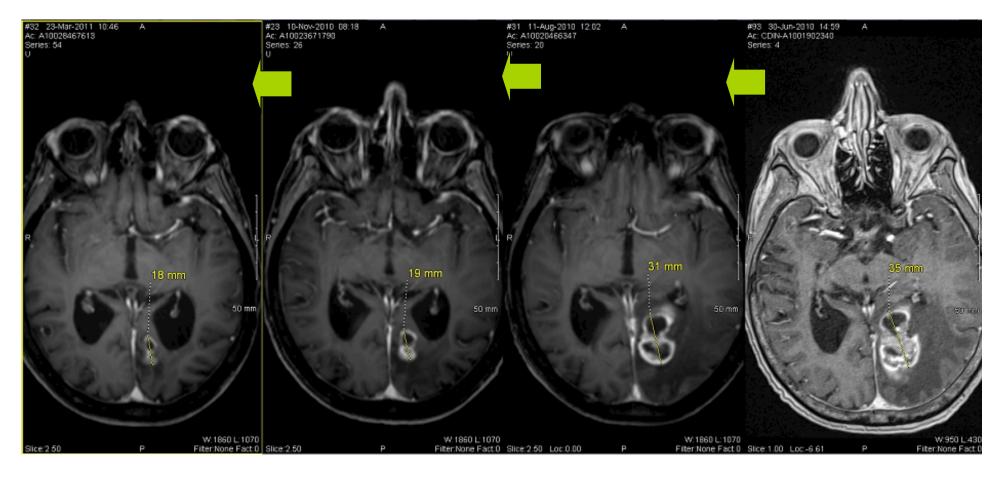
RCS: planification de traitement


- Une semaine avant ttt (Preplanning)
- -TDM dosimétrique, masque de contention -IRM dosimétrique
- -Dosimétrie
- Doses:


33Gy en 3 fr de 11Gy J1J3J5 si 3-4cm < MC > 1cm 20Gy en 1 fr de 20Gy si MC < 1cm 33Gy en 3 fr de 11Gy J1J3J5 après chirurgie (lit opératoire)

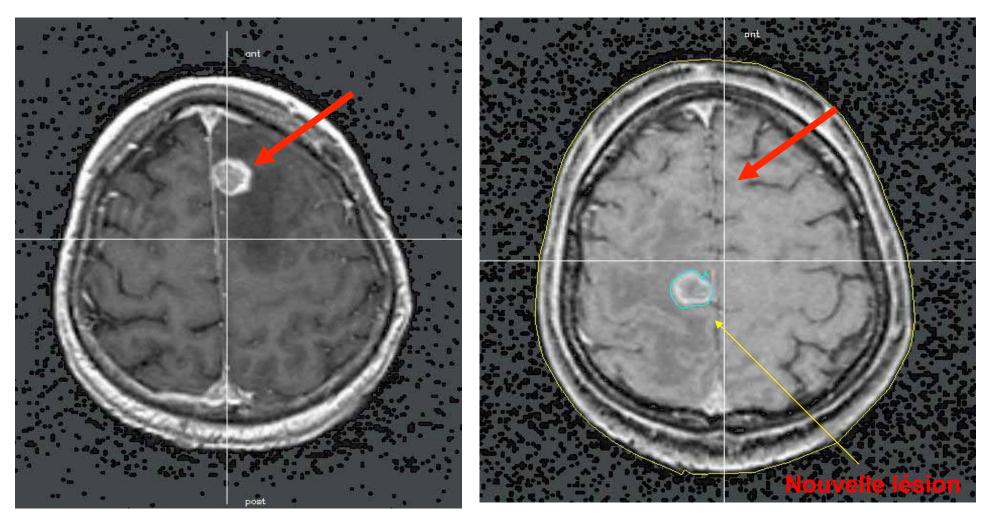

- Possibilité de traiter plusieurs lésions pendant la même séance
- Suivi: IRM à 1 mois puis tous les 3 mois

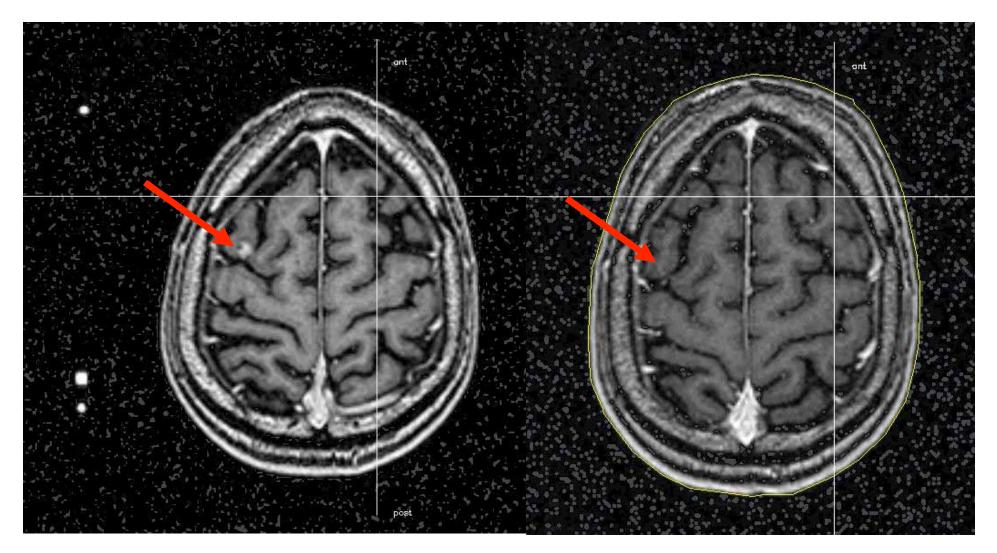




Novalis TX [™] – Varian / BrainLAB [™]

Exac Trac[™]


Patient présentant une MC d'un ADK pulmonaire traité par RCS


9 mois

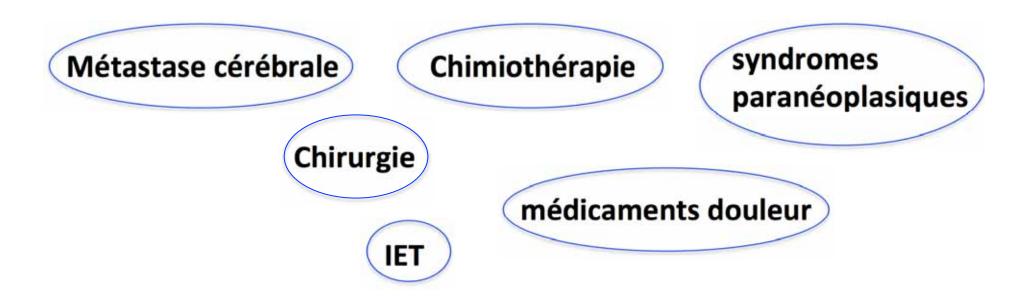
1 mois

Patient présentant une MC d'un ADK pulmonaire traité par RCS

Patient présentant une MC d'un carcinome épidermoide pulmonaire traité par RCS

PRÉVENTION DES EFFETS SECONDAIRES

Effets secondaires


Effets aigus (jusqu'à 3 mois après traitement)

Effets tardifs (> 3 mois après traitement)

- Fatigue
- Nausées
- Céphalées
- Aggravation neurologique (aggravation de l'œdème peri-tumoral)

- Alopécie persistante
- Dysfonction de la trompe d'eustache

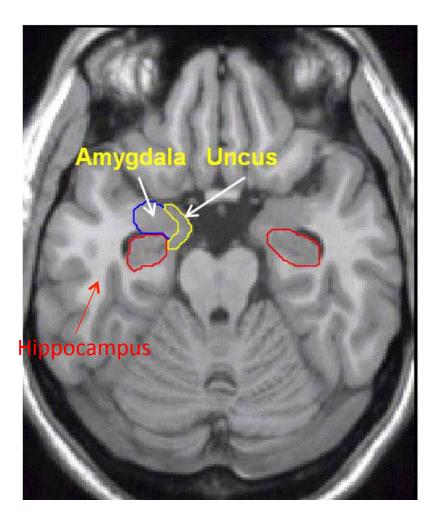
Causes de toxicité cognitive

Meyers et al (JCO 2004): phase 3 randomized trials evaluating survival and neurologic and neurocognitive function in 401 patients with BM with or without motexafin gadolinium: <u>the lack of tumor control, rather</u> <u>than the long-term effects of WBRT is a significantly more important</u> <u>variable in terms of neurocognitive decline.</u>

Toxicité cognitive à long terme

- Evaluation difficile
- Absence d'évaluation cognitive avant traitement
- Plusieurs échelles d'évaluation
- MMSE: manque de sensibilité
- EORTC trial 22952: premier essai randomisé avec évaluation de la qualité de vie (performance index: primary endpoint), mais non suffisamment spécifique
- Chang et al: Hopkins Verbal Learning Test (HVLT)
- Observance des tests d'évaluation

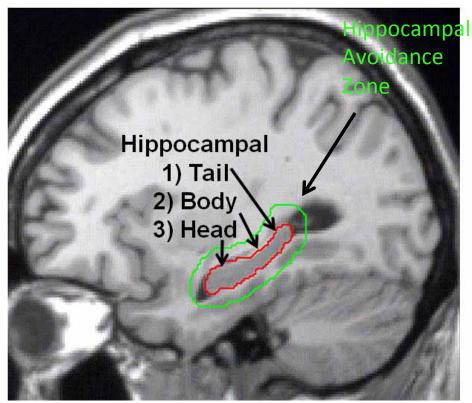
Toxicité cognitive à long terme

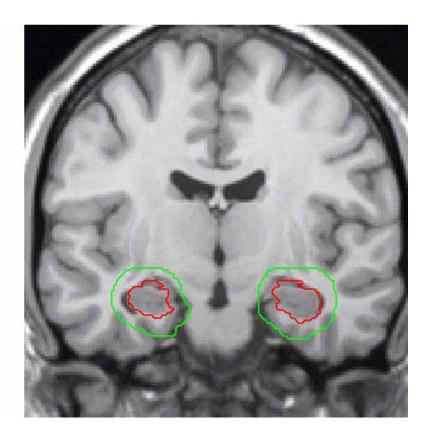

- Sun et al.: Essai randomisé RTOG 0214: IPC (30 Gy en 15fr of 2Gy) vs observation, CBNPC patients stade IIIa/b (tumeur primitive contrôlée)
- Evaluation: QLQ-C30, QLQ-BN20, MMSE, HVLT
- Observance des évaluations: 35% à 12 mois
- Qualité de vie: pas de différence à 6 et 12 mois
- MMSE: plus de détérioration à 3 mois dans le groupe IPC (36% vs 21%). Pas de différence à 6 et 12 mois.

Toxicité cognitive à long terme

- Mémoire à court terme: plus mauvaise dans le groupe IPC (45% vs 13% à 3 mois et 26% vs 7% à 12 mois)
- Mémoire différée: plus mauvaise dans le groupe IPC (44% vs 10% à 3 mois et 32% vs 5% à 12 mois)
- Détérioration de la mémoire avec HVLT
- Mémoire à court terme et à long terme affectées
- Pas de corrélation entre QDV et neurocognition
- IPC: fractions de 2 Gy vs IET: fractions de 2,5 Gy ou +

IET avec épargne hippocampique

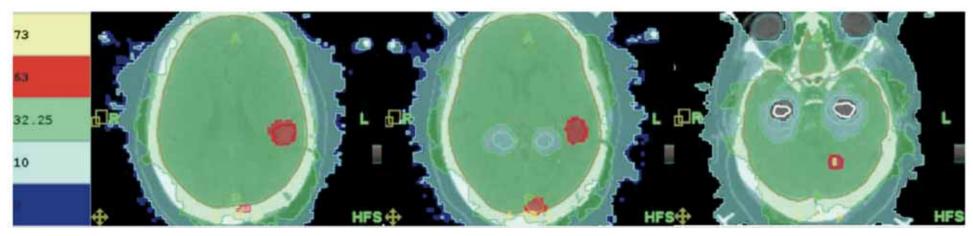

- Mémoire à court terme, orientation spatiale
- 3% des MC
- Effet dose sur la neurogenèse (Monje et al)
- Recommandation: D40% hippocampe D et G < 7,3 BED



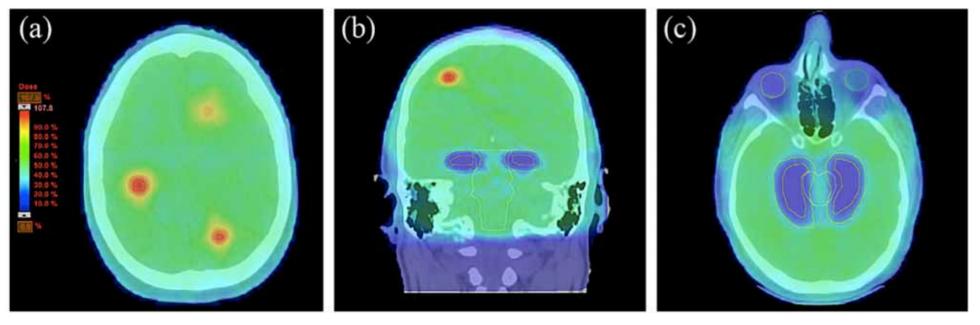
IET avec épargne hippocampique

•Nouvelles techniques d'irradiation: radiothérapie conformationnelle avec modulation d'intensité (RCMI), volumetric modulated arc therapy (VMAT), helical tomotherapy

•Phase II trial 0933 (RTOG)



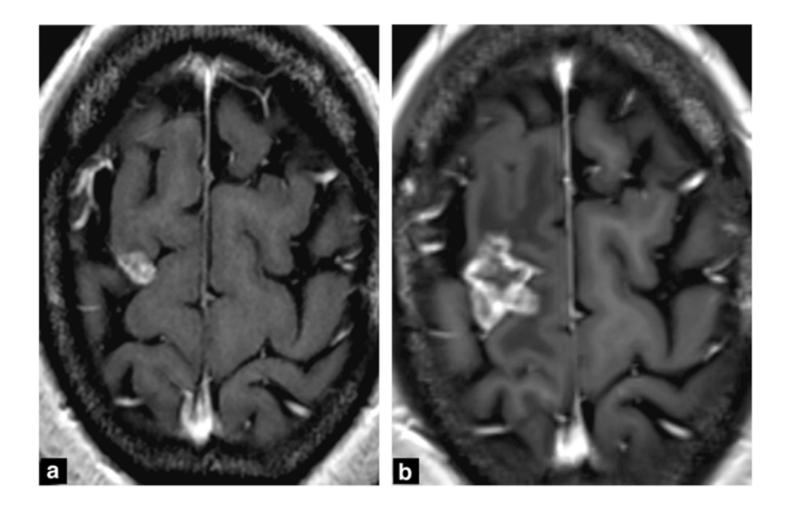
Phase II trial 0933 (RTOG) Gondi et al. JCO 2014


- Patients avec MC
- HA-WBRT à la dose de 30Gy en 10fr
- Evaluation de la cognition et de la QDV: baseline, 2, 4, 6 mois
- Objectif primaire: hopkins Verbal Learning Test à 4 mois

HVLT: déclin moyen entre baseline à 4 mois: 7.0% inférieur à la référence historique de 52% Chang et al (RCT IET vs IET + RCS).

IET avec épargne hippocampique

Ghia et al. IJROBP 2007


Hsu et al. IJROBP 2010

Qui peut bénéficier de l'IET avec épargne hippocampique?

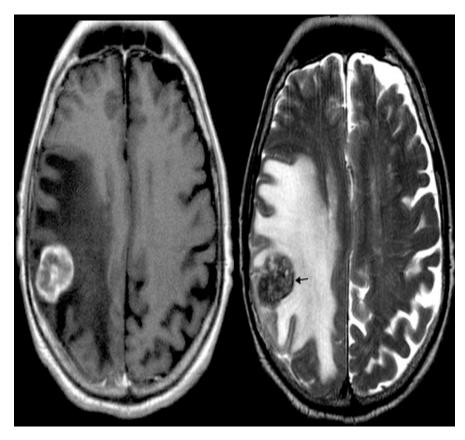
- Espérance de vie > 6 mois
- KPS > 70
- CBNPC
- IPC dans CBPC
- (Cancer du sein)

Radionécrose

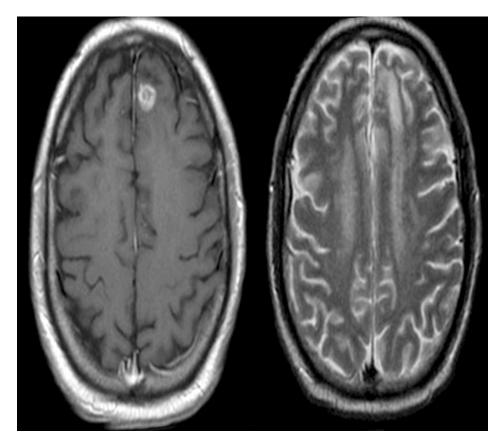
- Phénomènes nécrotiques et inflammatoires intenses symptomatiques
- Symptomatologie mimant celle de la récidive
- Prise de contraste, œdème avec effet de masse très difficile de différentier d'une récidive ou d'une poursuite évolutive
- Après RCS, les facteurs de risque favorisant de radionécrose:
 - dose totale d'irradiation
 - importance du volume d'irradiation
 - volume de l'encéphale irradié à la dose de 12 à 14 Gy
 - irradiation antérieure
 - sexe masculin
- Apparition en moyenne à 1 an après RT

12 et 15 mois post RCS

Diagnostic différentiel entre radionécrose et métastases

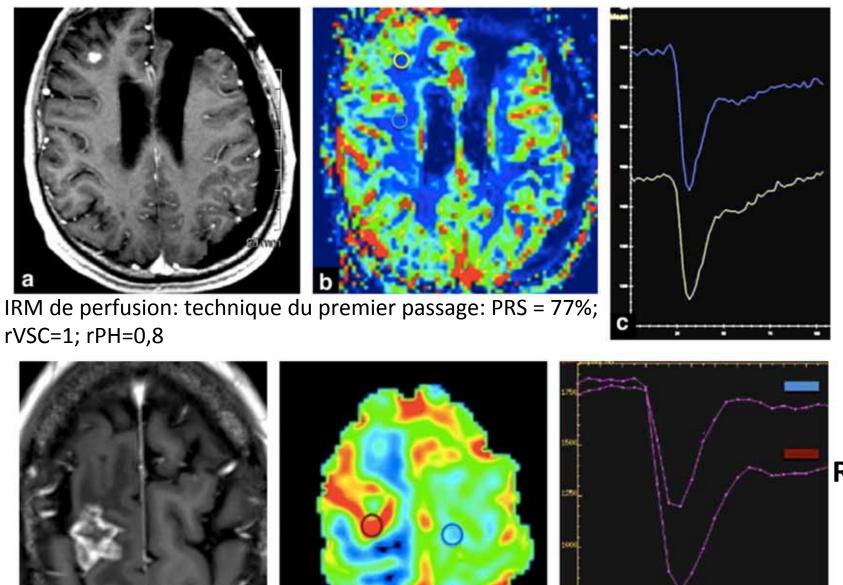

Eléments de réponse:

- Connaissance du dossier (timing, imageries antérieures)
- IRM: croissance volumique (> 65%: récidive) analyse de la perfusion analyse spectroscopique
- Scintigraphie



pseudo-progression ≠ radionécrose

Radionecrose: T1/T2 mismatch


T1-T2 match = tumeur

T1-T2 mismatch = Radionécrose

Kano, H., D. Kondziolka, et al. (2010). "T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery." <u>Neurosurgery</u> 66(3): 486-491; discussion 491-482.

Dequesada, I. M., R. G. Quisling, et al. (2008). "Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study." <u>Neurosurgery</u> 63(5): 898-903; discussion 904.

RN

Récidive

IRM de perfusion: technique du premier passage: PRS = 53%; rVSC=2,6; rPH=1,75

b

POINTS CLES

IET et fractionnement

- L'IET est le traitement de référence dans le cas de patients dont le pronostic est < 3 mois, à l'état général altéré ou ayant plus de 3 à 5 MC.
- Le schéma thérapeutique classique le plus utilisé reste le fractionnement de 30 Gy en 10 fractions de 3 Gy, même si, dans la plupart des études, il n'est pas un facteur pronostique tant pour la survie globale que pour le contrôle local.
- Le fractionnement choisi sera fonction de l'espérance de vie du patient.

RCS

- La RCS est indiquée pour un nombre de MC < 3 à 5 et de moins de 3cm de plus grand diamètre.
- Par rapport à l'IET, la RCS permet un meilleur contrôle local et impacte favorablement sur la survie.
- Retarder le moment de l'IET le plus possible, en privilégiant la RCS (maladie oligométastatique).

IET et RCS

- La revue de la littérature montre un bénéfice significatif de l'association d'une IET à un traitement local par RC ou RCS sur le contrôle intracrânien local et à distance ainsi que sur la survie spécifique neurologique comparé à ces modalités prises isolément.
- L'amélioration en survie n'est observée qu'en cas d'association des traitements que chez les patients avec une métastase unique.
- Les données actuelles ne permettent pas de dégager une supériorité d'une des modalités de traitement comparée aux autres.

IET et RCS

• En cas d'indisponibilité de la RCS, un complément d'irradiation par RTC-3D sur les sites métastatiques après IET est bénéfique par rapport à l'IET seule.

IET et chirurgie

- La chirurgie reste indispensable en l'absence de diagnostic anatomopathologique sur la tumeur primitive, et dans le cas d'une métastase menaçante engageant le pronostic vital ou de taille supérieure à 3 cm.
- Un traitement complémentaire est indispensable, étant donné que le taux de rechute locorégionale après une chirurgie seule peut atteindre 85 %, même si l'exérèse des métastases est souvent complète.
- L'IET adjuvante à la chirurgie permet un gain en termes de contrôle local et de survie globale. Cependant, il doit être discuté en faveur de la RCS du lit opératoire afin de privilégier la QDV des patients.

IET avec préservation hippocampique

• L'IET avec préservation hippocampique permettrait de diminuer la toxicité cognitive imputable à l'IET.

Que reste t'il de l'IET?

- Esperance de vie < 3 mois
- MC multiples > 3-5
- MC > 3-4 cm si chirurgie impossible, seule ou combinée avec RCS
- Traitement de sauvetage
- IPC

Conclusions:

- Le traitement des métastases cérébrales est complexe
- Indication de la RCS en augmentation
- Retarder le plus possible l'IET: maladie oligométastatique +++
- DS-GPA: spécificité > aux autres scores
- Traitement en fonction de la survie estimée
- Outil d'aide à la décision thérapeutique
- Discussion au cas par cas
- Nécessité d'essais prospectifs pour l'évaluation de la neurotoxicité