

Place des bancs d'essais en kinésithérapie respiratoire

Aucun conflit d'intérêt

Q banc d'essai

AVEZ-VOUS ESSAYÉ LE NOUVEAU BANC?

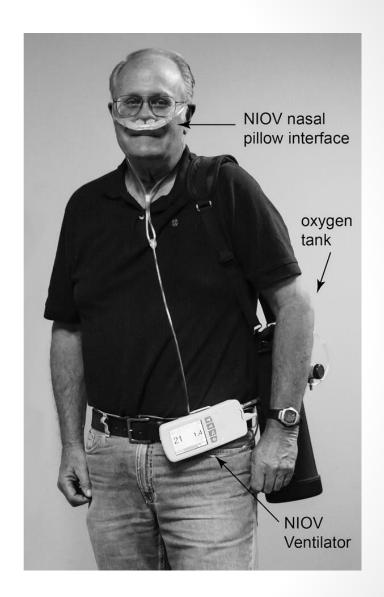
Publié le 4 Janvier 2016 par mairie de Jaujac

Catégories: #Travaux

Contexte actuel

- La stratégie thérapeutique et les techniques de kinésithérapie respiratoire utilisées dans la prise en soins des patients varient selon l'examen clinique et le bilan diagnostique.
- Les avancées cliniques et technologiques offrent aux praticiens de **nombreux** dispositifs pour faciliter ou améliorer la prise en soins des patients.
- L'évaluation scientifique des performances cliniques de ces dispositifs est méthodologiquement limitée par les faibles effectifs étudiés, le manque de reproductibilité, les variations des caractéristiques pulmonaire inter-patients....

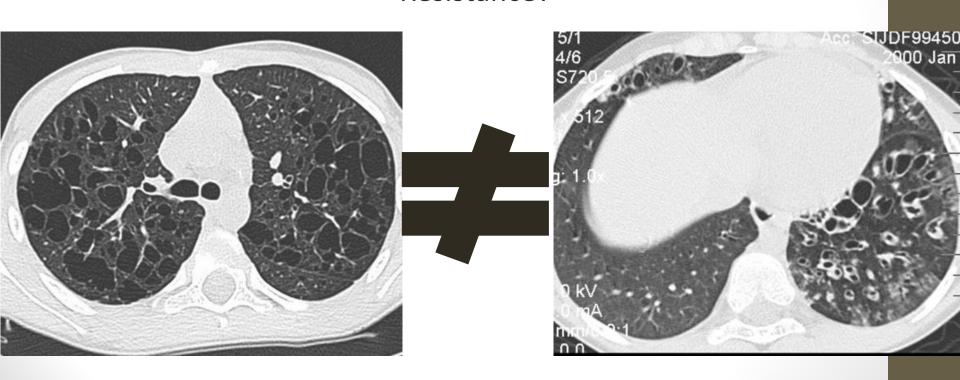
Développement des dispositifs



Porszasz, Am J Respir Crit Care Med, 2013

Contexte actuel

- La stratégie thérapeutique et les techniques de kinésithérapie respiratoire utilisées dans la prise en soins des patients varient selon l'examen clinique et le bilan diagnostique.
- Les avancées cliniques et technologiques offrent aux praticiens de **nombreux** dispositifs pour faciliter ou améliorer la prise en soins des patients.
- L'évaluation scientifique des performances cliniques de ces dispositifs est méthodologiquement limitée par les faibles effectifs étudiés, le manque de reproductibilité, les variations des caractéristiques pulmonaires inter-patients....

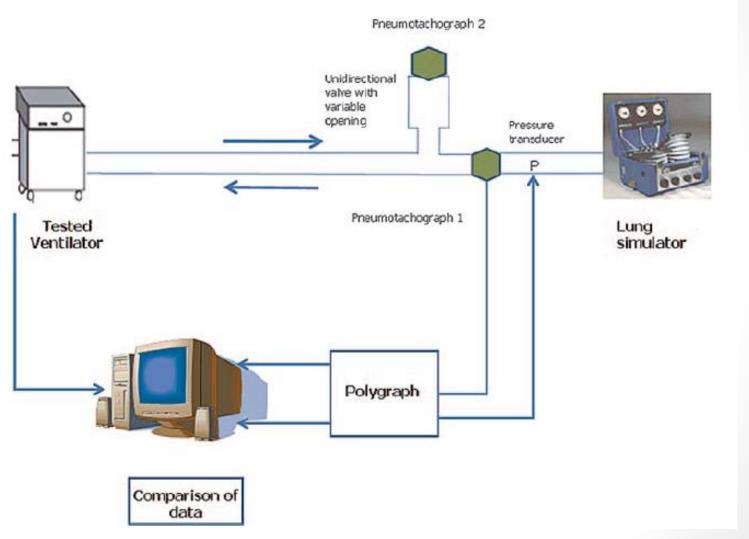

Variabilité inter-patients

Insuffisant Respiratoire Chronique Obstructif

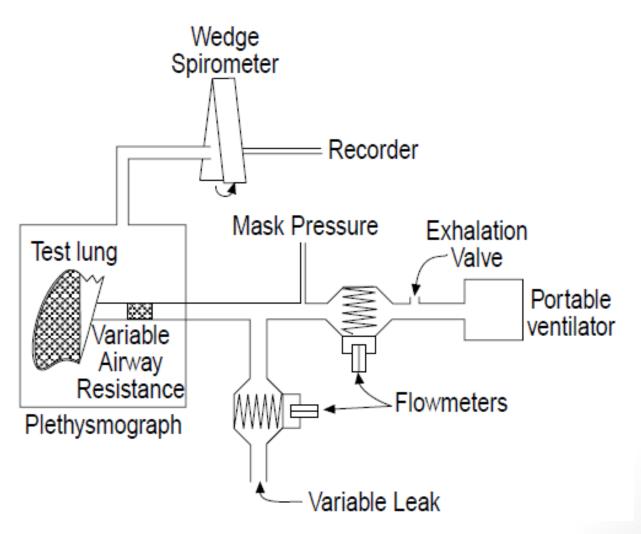
VEMS<50% theor

Compliance?

Résistance?



Intérêt d'un poumon mécanique



- Normal: compliance 60 mL/cm H₂O, resistance
 7.5 cm H₂O/L/s
- Obstructive: compliance 60 mL/cm H₂O, resistance 25 cm H₂O/L/s
- Restrictive: compliance 30 mL/cm H₂O, resistance 7.5 cm H₂O/L/s

Schéma d'un banc d'essai

Quelques exemples...

Quelques exemples...

Table 2 Mechanical parameters during pressure-controlled ventilation under different mechanical loading

Experimental settings	Fixed compartment		Experimental settings	Variable compartment		Total		Effective parameters		
	V _T (mL)	τ _F (s)		V _T (mL)	τ _V (s)	V _T (mL)	τ _V /τ _F (%)	E _E (cmH ₂ O/L)	R _E (cmH ₂ O/L/s)	τ _E (s)
E = 45, R = 20	538 541 545 556 557 561 581 572 569	0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444	E = 35, R = 5 E = 35, R = 20 E = 35, R = 50 E = 55, R = 5 E = 55, R = 20 E = 55, R = 50 E = 85, R = 5 E = 85, R = 20 E = 85, R = 50	679 642 548 448 449 439 310 304 302	0.143 0.571 1.429 0.091 0.363 0.909 0.059 0.235 0.588	1218 1184 1094 1004 1007 1000 892 876 872	32.2 128.6 321.6 20.5 81.8 204.7 13.3 52.9 132.4	20.3 20.7 26.9 26.1 24.6 24.3 30.8 29.1 26.3	5.1 10.1 16.7 6.8 10.1 15.5 8.7 10.7 14.4	0.254 0.486 0.621 0.262 0.412 0.636 0.284 0.369 0.550

E, R elastic (cmH₂O/L) and resistive (cmH₂O/L/s) loads, respectively; V_T tidal volume; E_E , R_E effective elastance and resistance, respectively; τ_F , τ_V , and τ_E , fixed, variable, and effective time

constants, respectively. Measured data represent mean values of three experimental determinations

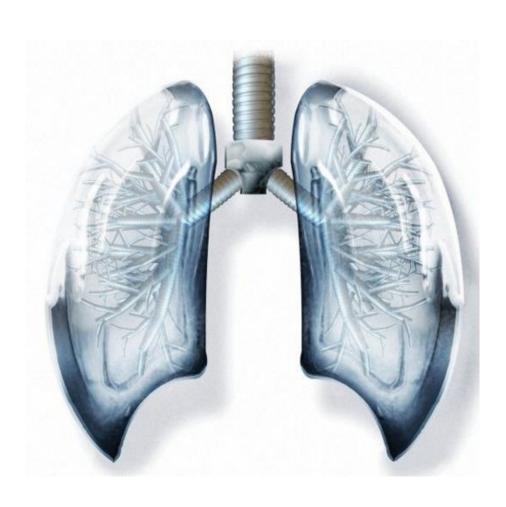
Quelques exemples...

$$\frac{V_{\rm T,VAR}}{V_{\rm T,FIX}} = 1.53 - 0.012 \times E \tag{1}$$

$$(P < 0.001; R^2 = 0.91),$$

$$\frac{V_{\rm T,VAR}}{V_{\rm T,FIX}} = 2.34 - 0.02 \times E \tag{2}$$

$$(P = 0.001; R^2 = 0.81),$$


$$\frac{V_{\text{TOT,VAR}}}{V_{\text{TOT,FIX}}} = 0.56 + \frac{5.17}{R}$$
 (3)

$$(P < 0.001; R^2 = 0.95).$$

En kinésithérapie respiratoire

- Evaluer les performances des différents dispositifs dans des conditions standardisés.
- Comparer les dispositifs selon différents scénario cliniques (ex. Restrictif vs. Obstructif).
- Simuler une situation clinique pour l'enseignement et la compréhension des mécanismes liés à la thérapie respiratoire.

Désencombrement?

Concrètement?

Quelle inclinaison? Quel débit?

Objectifs: Pression moyenne sup à 10 cmH₂O Fréquence d'oscillations à 12 Hz La plus grande amplitude oscillatoire

Performance Analysis of the Flutter VRP1 Under Different Flows and Angles

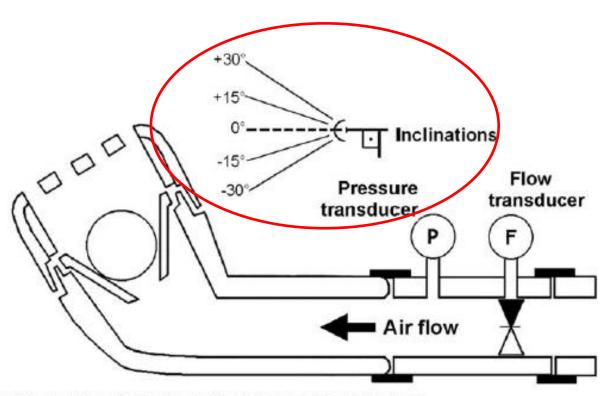


Fig. 1. Characteristics of the equipment and angles of inclination used in the protocol.

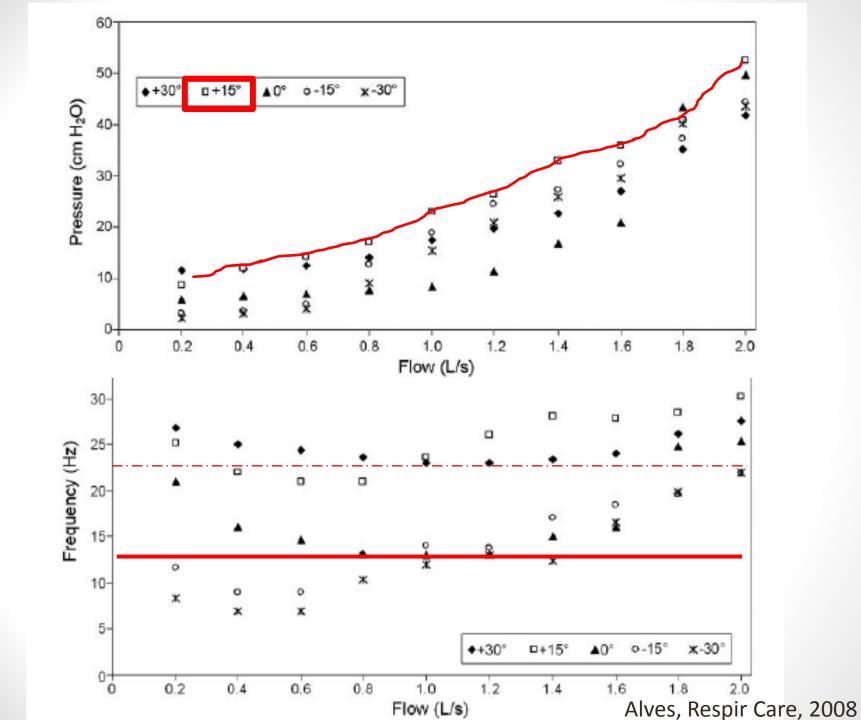
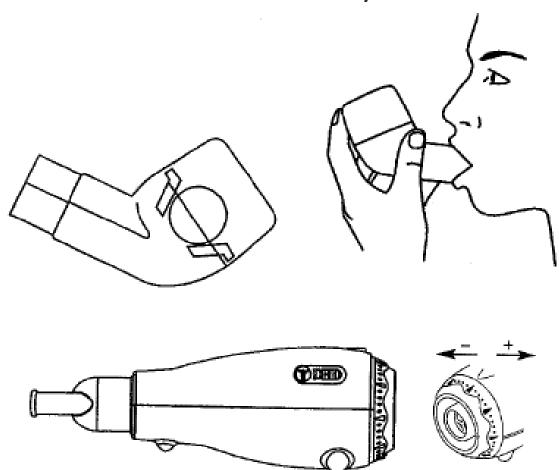
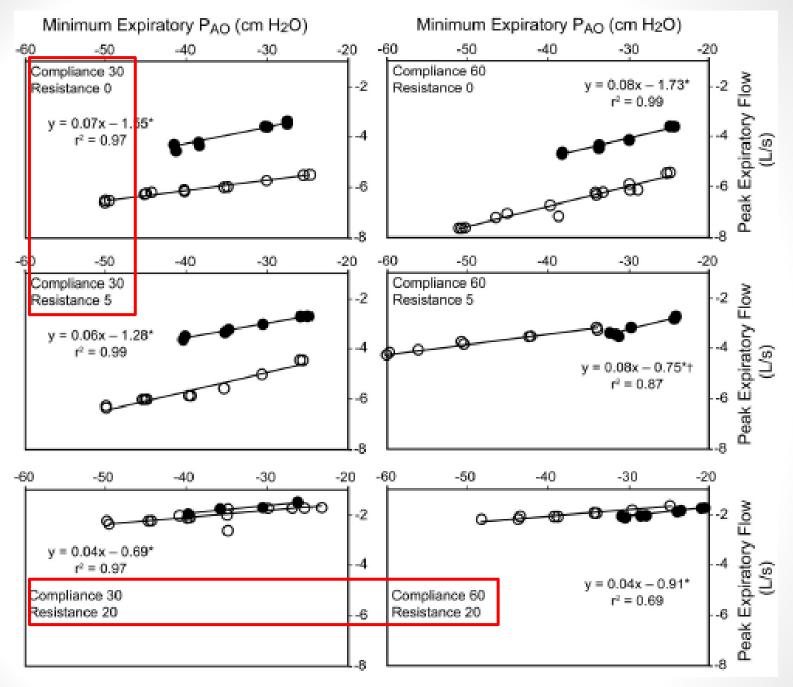



Table 1. Summary of the Relationship Between the Device Physical Variables, Airway Clearance Effects, and Theoretical Best Conditions of Expiratory Flow and Inclination to Optimize the Device Effects

Physical Variable	Airway Clearance Effect	Best Expiratory Flow	Best Inclination
Mean flow	Huff	Lower flows and lower lung volumes for secretions in distal airways	-30° +30°
		Higher flows and higher lung volumes for secretions in proximal airways	₹30
Mean pressure	Positive expiratory pressure (PEP)	0.2 L/s at PEP of 10 cm $\rm H_2O$ and above 1.0 L/s at PEP of 20 cm $\rm H_2O$	+15°/+30°
Oscillation frequency	High-frequency airway oscillation	≥ 0.2 L/s	All except -30°
Flow amplitude	Flow amplitude	> 1.4 L/s	0°/+15°/+30°

Acapella Versus Flutter

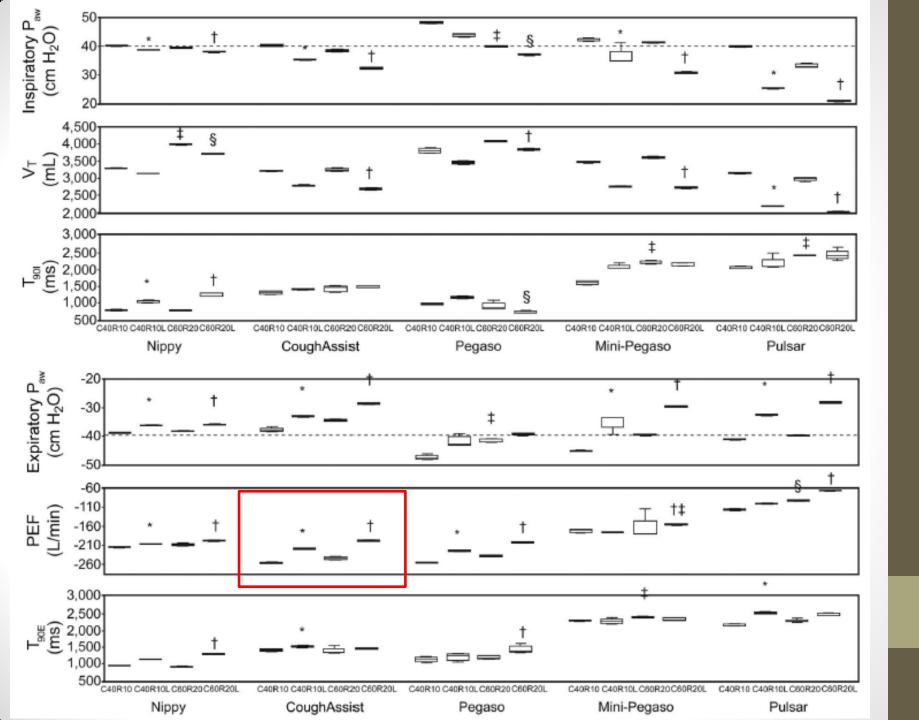
Débit de 5 à 30 L/min


Mean Pressure **Amplitude** Frequency 40 Acapella —◆— Acapella 40 p < 0.001p = 0.008p = 0.002—◆—Acapella 35 35 35 ------Flutter 30 30 30 OH 25 20 15 10 Med. Setting cm H20 25 25 20 20 꾿 15 15 10 10 10 5 5 5 5 25 0 30 10 15 Flow (L/min) 25 Flow (L/min) Flow (L/min) 40 40 Acapella p = 0.007p < 0.001—◆—Acapella 40 p = 0.01735 35 -D-Flutter -□-- Flutter 35 30 30 30 High Setting 25 25 cm H₂O 25 cm H₂O 20 20 보²⁰ 15 15 10 10 10 5 5 0 20 25 25 25 Flow (L/min) Flow (L/min) Flow (L/min) A Amplitude (mm Hg) Amplitude (mm Hg)

Evaluation des nouveaux dispositifs

Bench Assessment of a New Insufflation-Exsufflation Device

Véronique Porot MD and Claude Guérin MD PhD



Porot, Respir Care, 2013

Bench Comparative Assessment of Mechanically Assisted Cough Devices

Table 1. Mechanically Assisted Cough Devices Tested in This Study

Ventilator	Manufacturer
Nippy cough assistor	B&D Electromedical (Warwickshire, UK)
CoughAssist	Philips Healthcare (Best, The Netherlands)
New Negavent DA-3 PLUS Pegaso	Dima Italia (Bologna, Italy)
New Negavent DA-3 PLUS Mini Pegaso	Dima Italia
Pulsar	Siare Engineering International Group (Bologna, Italy)

Recrutement pulmonaire?

Comparison of Alpha 200 and CoughAssist as Intermittent Positive Pressure Breathing Devices: A Bench Study

Table. Values of Intercepts and Slopes Computed From the Estimates of the Coefficients of the Linear Regression Analysis Between Inspired Volume and Maximal Inspiratory Pressure in Each Mechanical Condition, for Each Device and Each Artificial Airway

	Compliance 30 mL/cm H ₂ O, Resistance 5 cm H ₂ O/L/s												
Artificial	Alpha 200 Flow 1				Alpha 200 Flow 2				Cough Assist				
Airway	Intercept, L		Slope, L/cm H ₂ O		Intere	Intercept, L		Slope, L/cm H ₂ O		Intercept, L		Slope, L/cm H ₂ O	
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	
Control	1.280	0.001	0.039	0.0001	1.130	0.002	0.036	0.0001	1.093	0.001	0.030	0.002	
ETT 6.5	1.180	0.005	0.038	0.001	1.020	0.001	0.042	0.0001	1.004*	0.002	0.027*	0.005	
ETT 7	1.360	0.003	0.044	0.001	1.100	0.003	0.044	0.001	1.048*	0.001	0.033*	0.003	
ETT 7.5	1.440	0.001	0.045	0.000	1.140	0.002	0.042	0.0001	1.058*	0.001	0.030*	0.002	
ETT 8.0	1.650	0.002	0.052	0.003	1.220	0.004	0.050	0.001	1.030*	0.001	0.022*	0.0001	
ETT 8.5	1.720	0.003	0.053	0.001	1.260	0.005	0.046	0.001	1.060*	0.002	0.030*	0.004	
Trach 6.0	1.720	0.002	0.057	0.0001	1.180	0.003	0.050	0.001	0.990*	0.001	0.028*	0.003	
Trach 7.0	1.770	0.004	0.055	0.001	1.270	0.004	0.049	0.001	1.010*	0.001	0.029*	0.004	
Trach 8.0	1.830	0.003	0.055	0.0001	1.320	0.004	0.047	0.001	1.033*	0.001	0.029*	0.004	
	Compliance 60 mL/cm H ₂ O, Resistance 5 cm H ₂ O/L/s												
Control	2.600	0.003	0.078	0.001	2.300	0.004	0.070	0.001	2.093	0.002	0.063*	0.004	
ETT 6.5	2.490	0.002	0.080	0.0001	2.060	0.0001	0.090	0.004	1.950*	0.001	0.048*	0.003	
ETT 7	2.690	0.002	0.088	0.001	2.180	0.003	0.090	0.001	2.020*	0.002	0.055*	0.004	
ETT 7.5	3.010	0.004	0.097	0.001	2.340	0.004	0.090	0.001	2.060*	0.003	0.051*	0.006	
ETT 8.0	3.300	0.002	0.106	0.0001	2.410	0.007	0.100	0.001	2.080*	0.001	0.060*	0.003	
ETT 8.5	3.520	0.006	0.112	0.001	2.560	0.006	0.090	0.001	2.080*	0.002	0.057*	0.007	
Trach 6.0	3.450	0.002	0.114	0.0001	2.350	0.002	0.111	0.0001	1.950*	0.001	0.051*	0.003	
Trach 7.0	3.580	0.003	0.114	0.001	2.530	0.003	0.100	0.001	2.020*	0.001	0.055*	0.003	
Trach 8.0	3.680	0.002	0.117	0.001	2.630	0.003	0.097	0.001	2.060*	0.002	0.058*	0.004	

Bourdin, Respir Care, 2012

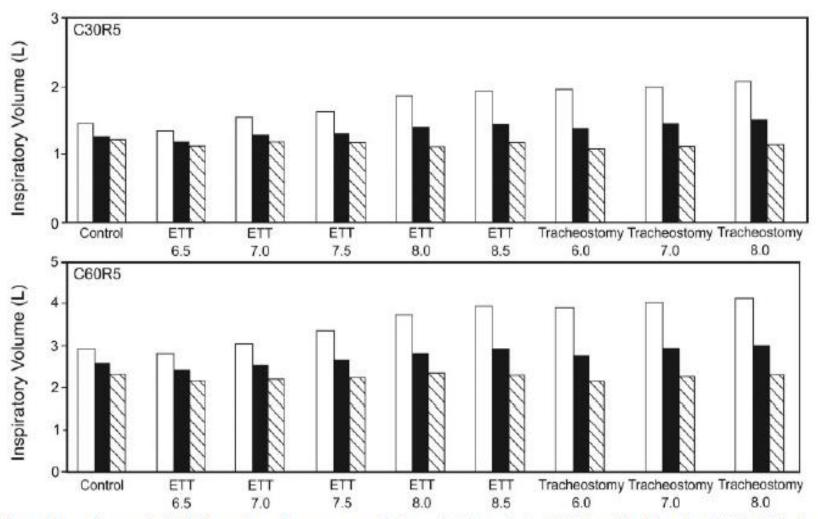
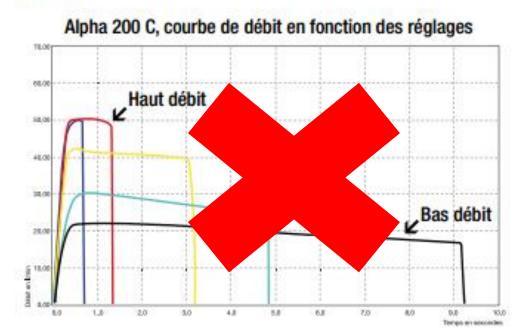
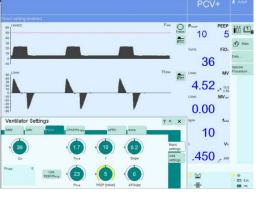


Fig. 2. Mean values of computed inflation volume for a pressure of 40 cm H₂O from Alpha 200 at low (black bars) and high (white bars) flows and from CoughAssist (hatched bars) for compliance of 30 mL/cm H₂O and resistance of 5 cm H₂O/L/s (C30R5) and compliance of 60 mL/cm H₂O and resistance of 5 cm H₂O/L/s (C60R5) mechanical conditions across control condition and the presence of artificial airways (size range 6.5–8 mm). ETT = endotracheal tube.



Intérêt du relaxateur de pression dans les soins respiratoires


Oups!

Le réglage du débit est particulièrement important.

Lorsque le débit est bas, il laisse aux poumons le temps de se remplir permettant ainsi à un plus grand volume d'air d'entrer dans les poumons avant d'atteindre la pression de coupure.

La diminution du débit permet de faire rentrer de plus grands volumes d'air.

IPV + Ventilateur?

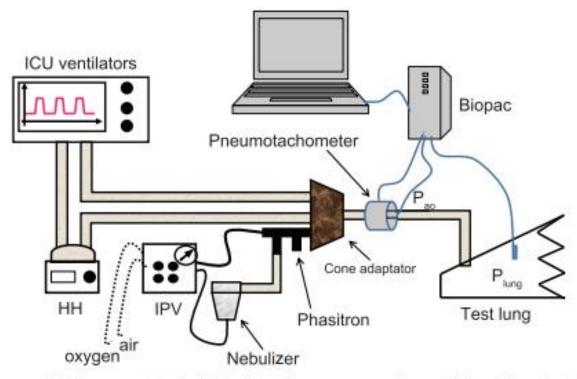


Fig. 1. Experimental set-up used in the present study. IPV = intrapulmonary percussive ventilation. HH = heated humidifier. P_{lung} = lung pressure. P_{eo} = pressure at the airway opening.

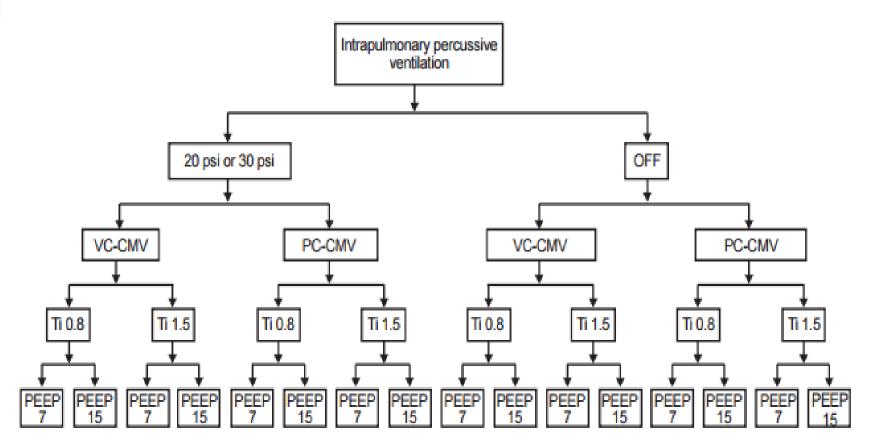
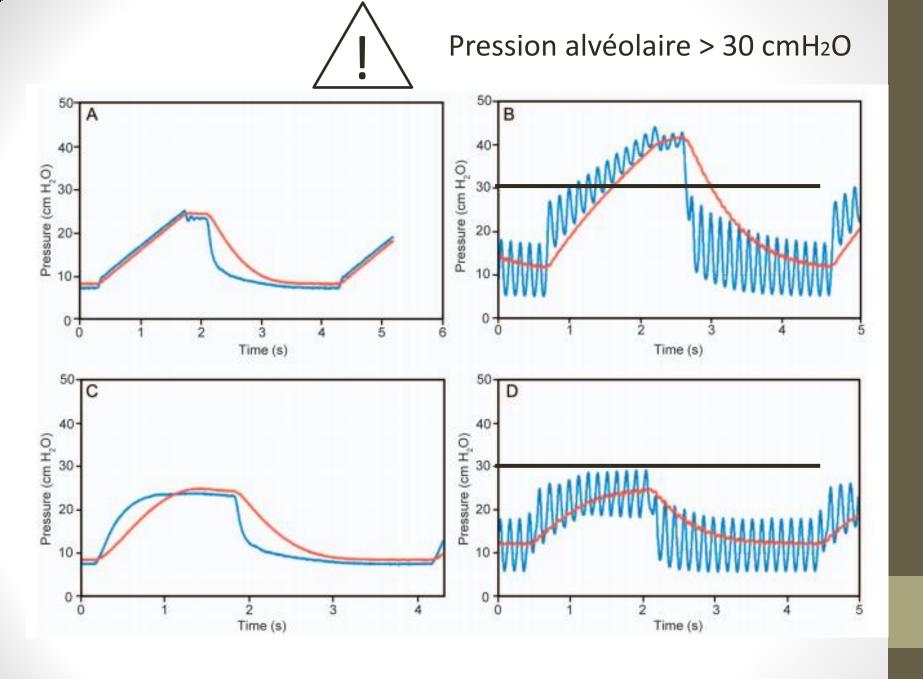



Fig. 2. Study design. IPV = intrapulmonary percussive ventilation. PC-CMV = pressure controlled continuous mandatory ventilation mode.VC-CMV = volume controlled continuous mandatory ventilation mode. T₁ = inspiratory time.

Riffard, Respir Care, 2014

Ventilation non invasive?

Intentional Leaks in Industrial Masks Have a Significant Impact on Efficacy of Bilevel Noninvasive Ventilation*

A Bench Test Study

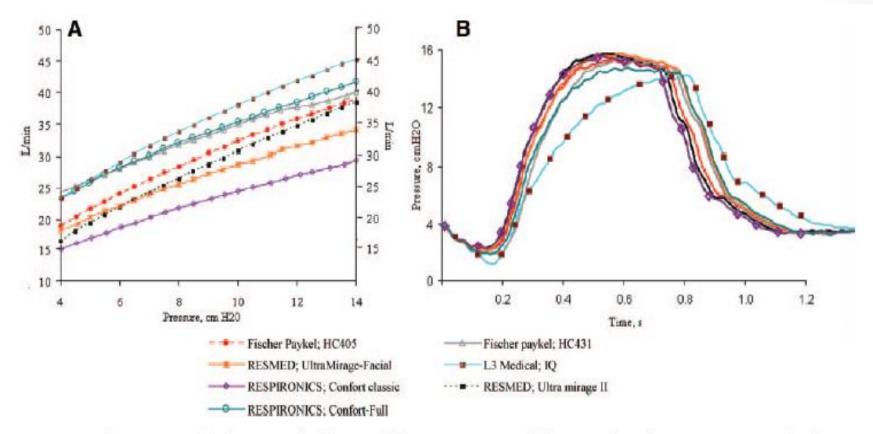


FIGURE 1. Left, A: Intentional leaks expressed as function of the pressure in seven different masks. Right, B: Pressure-time plot of VPAP III ST with the seven masks for the normal lung condition.

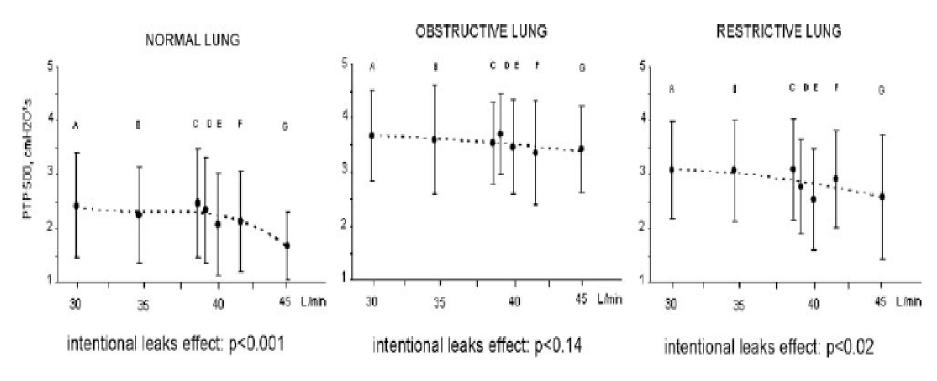


FIGURE 3. Capacity to achieve and maintain preset pressure (PTP₅₀₀) according to intentional leaks of the seven masks and the four BPPVs (single-factor repeated-measures analysis). A: ComfortClassic (29.4 L/min); B: facial Ultra Mirage (34.1 L/min); C: nasal Ultra Mirage (38.5 L/min); D: FlexiFit 405 (39.1 L/min); E: FlexiFit 431 (40 L/min); F: ComfortFull (41.7 L/min); and C: IQ SleepNet (45.2 L/min) at 14 cm H_2O of inspiratory pressure. Each point of VT represents mean \pm SD of the four apparatus' tested for each mask.

CHEST

Original Research

RESPIRATORY CARE

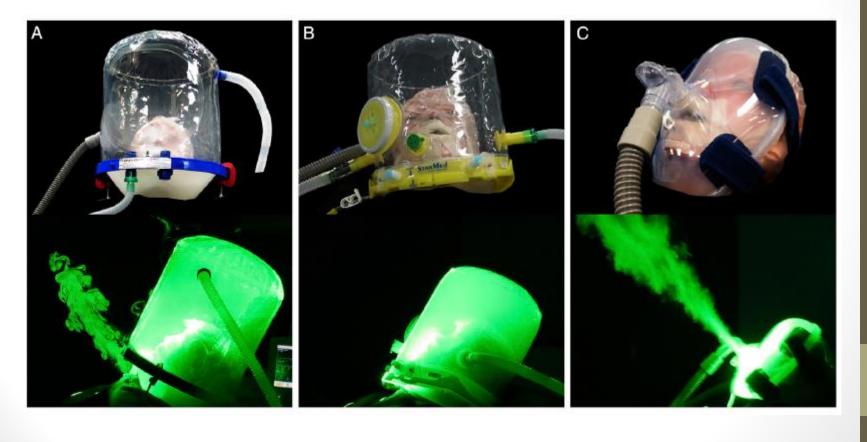
Monitoring of Noninvasive Ventilation by Built-in Software of Home Bilevel Ventilators

A Bench Study

Table 1—Home Ventilators Tested, Compatible Software, and Modality of Estimation of Leaks

Monitoring Ventilator	Software	Leaks
Monnal T30	Bora Soft V.6	Average leak ^a
Synchrony	Encore Pro 2	Average leak ^a
Trilogy	Direct View	Average leak ^a
Ventimotion	Ventisupport	Average leak ^a
Vivo 40	Vivo PS Software 3	Average leak at expiratory positive airway pressure ^b
VPAP III ST	ReScan 3.10	Average leak without intentional leaks ^c
VPAP IV ST-A	ReScan 3.10	Average leak without intentional leaks ^e

Table 4—Results Obtained From Bench Test and Test of Ventilator Software for Seven Ventilators


		Unintentional leak, 0 L/min					
Device	VT Bench, mL ^a	VT Software, mL ^b	[VT Bench] – [VT Software], mL	Leaks on Bench, L/min ^e	Leaks from Software, L/min ^d	[Leaks on Bench] – [Leaks from Software], L/min	
A	912	711	201	52.8	45.0	7.8	
В	968	840	128	40.1	35.0	5.1	
C	886	797	89	44.8	46.0	-1.2	
D	1,033	705	328	38.1	26.2	11.9	
E	809	690	119	40.5	20.2	20.3	
$\mathbf{F}^{\mathbf{e}}$	1,015	750	265	0.0	1.2	-1.2	
G_c	1,032	820	212	0.0	2.4	-2.4	
			Uninten	tional leak, 60 L/m	in		
A	668	547	121	76.8	62.0	14.8	
В	800	700	100	65.5	60.0	5.5	
C	923	826	97	74.3	75.0	-0.7	
D	1,116	712	404	96.2	68.2	28.0	
E	763	580	183	91.3	38.2	53.1	
Fe	1,062	900	162	30.4	31.2	-0.8	
C_e	1,228	1,100	128	32.5	33.6	-1.1	

Sous estimation des volumes réels de 10 à 37%

Exhaled Air Dispersion During Noninvasive Ventilation via Helmets and a Total Facemask

David S. Hui, MD, FCCP; Benny K. Chow, PhD; Thomas Lo, MSc; Susanna S. Ng, MBChB; Fanny W. Ko, MD, FCCP; Tony Gin, MD; and Matthew T. V. Chan, MD

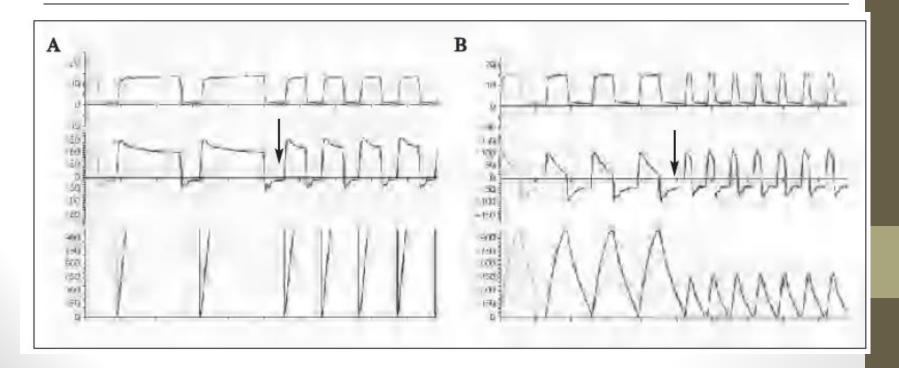
Carlo Olivieri Roberta Costa Giorgio Conti Paolo Navalesi

Bench studies evaluating devices for non-invasive ventilation: critical analysis and future perspectives

Table 1 Major problems encountered during bench studies evaluating devices for non-invasive ventilation and of the possible solutions

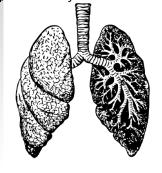
Critical issue	Problem	Proposed solution
Different lung models	Impact unknown	Need for evaluation
Simulated effort	Influence of inspiratory effort on ventilator performance	Standardized inspiratory effort: weak effort 2 cmH ₂ O, normal effort 8 cmH ₂ O, high effort 15 cmH ₂ O, strenuous effort 25 cmH ₂ O
Mechanical properties of the "virtual" respiratory system	Different values of resistance and compliance	Healthy: $C = 100 \text{ mL/cmH}_2\text{O}$; $R = 5 \text{ cmH}_2\text{O/L/s}$ Obstructive: $C = 100 \text{ mL/cmH}_2\text{O}$; $R = 20 \text{ cmH}_2\text{O/L/s}$ Restrictive: $C = 25 \text{ mL/cmH}_2\text{O}$; $R = 5 \text{ cmH}_2\text{O/L/s}$ Mixed: $C = 50 \text{ mL/cmH}_2\text{O}$; $R = 10 \text{ cmH}_2\text{O/L/s}$

Enseignement?



TECHNIQUES AND PROCEDURES

Design of a Lung Simulator for Teaching Lung Mechanics in Mechanical Ventilation


Sarah Heili-Frades, Germán Peces-Barba, and María Jesús Rodríguez-Nieto

Servicio de Neumología. Fundación Jiménez Díaz-CAPIO, Madrid, Spain

Simulation haute fidélité

Conclusion

- Il existe une multitudes d'étude sur banc d'essais susceptibles de fournir des données sur la performance des dispositifs.
- Permettent l'évaluation de dispositifs impliquant directement les soins de kinésithérapie respiratoire.
- Des données qui pourraient peut être influencer la pratique des thérapeutes.
- Aucune étude à ce jour sur l'évaluation des données fournies par les bancs d'essais sur la pratique clinique.
- (Il y a à disposition des Jaujaquois un nouveau banc à essayer.)

