

Cours au Groupe d'Oncologie de la	
de Pneumologie de Langue Francaise	Société de
20 Septembre 2016	

Immunothérapie en Cancérologie: checkpoints immunologiques et voies de recherche

Christophe CAUX

Cancer Research Centre of Lyon INSERM U1052, Centre Léon Bérard Director A. Puisieux

Team N°11 « Therapeutic targeting of tumor cells and their immune environment »

Christophe Caux DR Inserm

Immuno-surveillance and escape mechanisms

- Evidences of tumor immuno-surveillance
- The immune system as a barrier to tumor formation and progression

- Cancer cells: How they avoid immune surveillance and destruction
- Immune Checkpoints

Evidences of Tumor Immuno-Surveillance in Immunocompetent Mice: Example of IFNg¹

Methylcholanthrene

Evidences of Tumor Immuno-Surveillance in Immunocompetent Mice: Role of T cells¹

1. Koebel CM, LJ Old, M Smyth & Schreiber RD, Nature 2007, 450(7171):903-7.

Evidences of Tumor Immuno-Surveillance in Human: Increased Cancer Incidence in Immuno-Depressed Transplanted Patients¹

Tumor Site	Ratio
Skin (non-melanoma)	24.7
Thyroid	14.3
Endocrine system	13.8
ORL	10.8
Vulva, vagina	10.3
Non-Hodgkin Lymphoma	9.1
Kidney	5.5
Colorectal	3.6
Lung	2.4
Brain	2.4
Prostate	2.1
Melanoma	1.7

^{1.} Birkeland, Int J Cancer 1995 30: 183-9.

Effector Memory T Cells Infiltration Predict Survival in Colorectal Cancer¹

^{2.} Galon J et al. Science 2006;313:1960-64.

Immunogenic Cell Death in Cancer Therapy

Immuno-surveillance and escape mechanisms

- Evidences of tumor immuno-surveillance
- The immune system as a barrier to tumor formation and progression

- Cancer cells: How they avoid immune surveillance and destruction
- Immune Checkpoints

Both Innate and Adaptive Arms of The Immune System Can Fight Tumors

Innate Immunity

Can recognize native structures through somatic encoded receptors from pathogens and nascent tumor cells and destroy them

NK cells

Hematopoietic Stem

cell

Dendritic cells

T cells

B cells

Adaptive Immunity

Recognize and eradicate pathogens and nascent tumor cells through their antigen receptor TCR & BCR (high diversity due to genetic recombination)

NK = natural killer.

1. Norvell A. In: Prendergast GC et al. *Cancer Immunotherapy*. 2nd ed. Elsevier; 2013:11–24.

The Innate Immune System Fight Tumors Via a Variety of Functionally Specialized Cells¹

Destruction of Infected cells by Cytotoxicity, Phagocytosis or Antibody Dependent Cell Cytotoxicity

NK = natural killer.

1. Norvell A. In: Prendergast GC et al. *Cancer Immunotherapy*. 2nd ed. Elsevier; 2013:11–24.

Some Tumor Cells Express Multiple Antigens That Are Not Expressed by Normal Cells¹

Normal cells express/release molecules that don't elicit an immune response (tolerance to normal self).

Tumor cells express/release abnormal self antigens that cause them to be recognized as foreign entities and therefore elicit an immune response.

om Abbas, Lichtman, & Pober: Cellular and Molecular Immunology. W.B. Saunders, 1999, Fig.

Mutational Heterogeneity in Cancer Creates Therapeutic Challenges and Opportunities

Altered proteins contain new epitopes for immune recognition, providing a common denomination for immunotherapy

3. Activated T cells migrate back to the tumor.

3. Activated T cells migrate back to the tumor.

T-Cell Activity Is Regulated By Immune Checkpoints to Limit Autoimmunity¹

CTLA-4 = cytotoxic T-lymphocyte antigen 4; PD-1 = programmed cell death protein 1; LAG-3 = lymphocyte activation gene 3; TIM-3 = T-cell immunoglobulin and mucin protein 3.

Immuno-surveillance and escape mechanisms

- Evidences of tumor immuno-surveillance
- The immune system as a barrier to tumor formation and progression

- Cancer cells: How they avoid immune surveillance and destruction
- Immune Checkpoints

Tumor escape mechanisms

^{1.} Drake CG, et al. Adv Immunol. 2006;90:51-81; 2. Vesely MD, et al. Annu Rev Immunol. 2011;29:235-271.

Tumor escape mechanisms

3. Recruiting Immunosuppressive Cells: ie Treg Exploiting Immune Tolerance Pathways

Regulatory T lymphocytes (Treg) inhibit conventional T cell activation

- Involved in auto-immunity
- Contributing to tumor development
- Increase Treg frequency in blood of patients suffering from different cancer types (Udaya 2002, Wolf 2003)
- Negative Impact on patients survival in ovarian cancer (Curiel 2004)

Nature Reviews | Immunology

Adapté de : Wood, K.J. and Sakaguchi, S. (2003) Nat Rev Immunol 3, 199-210

Regulatory T cell (Treg) Infiltration Is a Bad Prognosis Factor in Ovarian Tumor

Plasmacytoid Dendritic Cells (pDC) and Treg at the Center

of Immunosuppressive Networks in Breast Tumors

1. Gobert M, Cancer Res, 2009; 2. Ménétrier-Caux C, Cancer Res, 2009; 3. Faget J, Ménétrier-Caux C, Cancer Res, 2011; 4. Labidi-Galy Bendriss-Vermare N, Cancer Res 2011; 5. Faget J, Ménétrier-Caux, Cancer Res, 2012; 6. Sisirak V, Bendriss-Vermare N, Cancer Res 2012; 7. Sisirak V, Bendriss-Vermare N, Int J Cancer 2013; 8. Le Mercier I, Puisieux I, Goutagny N, Cancer Res 2013

Plasmacytoid Dendritic Cells (pDC) and Treg at the Center of Immunosuppressive Networks in Breast Tumors

Tumor escape mechanisms

^{1.} Drake CG, et al. Adv Immunol. 2006;90:51-81; 2. Vesely MD, et al. Annu Rev Immunol. 2011;29:235-271.

Immuno-surveillance and escape mechanisms

- Evidences of tumor immuno-surveillance
- The immune system as a barrier to tumor formation and progression

- Cancer cells: How they avoid immune surveillance and destruction
- Immune Checkpoints

Immune Checkpoints

- Checkpoint pathways
 - CTLA-4 and PD-1
- Other Checkpoints: B7 family and others
- Beyond Checkpoints: Costimulators
- Beyond T cells: NK, DC, Macrophage
- Markers for checkpoint pathway inhibition

Antigen-presenting cell T cell PDL1 or PDL2 PDL1 or PDL2 PD1 CD80 or CD86 CD28 CD80 or CD86 CTLA4 B7RP1 ICOS B7-H3 (B7-H4 HVEM KIR Peptide Signal 1 MHC class I or II LAG3 CD137L (CD137 -OX40L (OX40 CD70 CD27 CD40 CD40L GAL9 TIM3 Adenosine . A2aR Cytokines IL-6, IL-10, L-12, IL-18

Immune Checkpoints

-Famille B7

Famille TNF

Pardoll. Nat Rev Cancer. 2012.

Tumor Infiltrating Lymphocytes Express Multiple Immunoinhibitory Receptors

These are druggable targets for tumor immunotherapy

CTLA-4 and PD-1 Pathway Inhibits T Cell Responses

Ipilimumab (Anti- CTLA4) Improve Long Term Survival in Metastatic Melanoma

Ipilimumab plus dacarbazine for previously untreated metastatic melanoma.¹

Improved survival with ipilimumab in patients with metastatic melanoma. ²

1. Robert C, Thomas L, et al. *N Engl J Med*. 2011; 364:2517-26. 2. Hodi FS, O'Day SJ, et al. *N Engl J Med*. 2010; 363:711-23

Anti-CTLA4 of IgG2a isotype Enhance Antitumor Activity Through Depletion of Intratumoral Tregs

Fc-Dependent Depletion of Tumor Infiltrating Treg co-Defines the Efficacy of anti-CTLA4 Therapy

T-infiltrating
Tregs express high levels
of surface CTLA-4

Intra-Tumoral T-specific Tregs are depleted by α-CTLA-4 therapy via FcgRIV+ Cells

Tumor Infiltrating Lymphocytes Express Multiple Immunoinhibitory Receptors

These are druggable targets for tumor immunotherapy

Potent Therapeutic Efficacy of Pembrolizumab (anti-PD1 MSD) in Melanoma

53% objective Responses

N=135, 13% grade 3/4 toxicity

Pembrolizumab Antitumor Activity

^{5.} Daud A et al. 2014 SMR; 2. Garon EB et al. ESMO 2014; 3. Chow LQ et al. ESMO 2014; 4. O'Donnell P et al. 2015 Genitourinary Cancers Symposium; 5. Muro K et al. 2015 Gastrointestinal Cancers Symposium; 6. Nanda R et al. SABCS 2014; 7. Moskowitz C et al. 2014 ASH Annual Meeting; 8. Alley EA et al. 2015 AACR.

Differences Between Blocking CTLA4/B7 and Blocking PD-1/PD-L1

Tumor Antigen-Specific CD8 T cells Infiltrating the Tumor Express High Levels of PD-1 and Are Functionally Impaired

Tumor infiltrating T cells upregulate PD1

A CD3 gated Pt 7 Pt 8 Healthy 36.2% 71.6% 51.5% 54.5% Donor 0.5% 0.5% 2.9% 6.2% 4.1% 3.9%

PD1 expressing T cells are dysfunctional

PD-L1: B7-1 Pathway Also Inhibits T Cell Responses

- B7-1 interacts more strongly with PD-L1 (1.7 μ M) than with CD28 (4 μ M) but less strongly than with CTLA-4 (0.2 μ M)
- All therapeutic PD-L1 Abs are dual blockers
- B7-1: PD-L1 interaction inhibits T cell responses predominant role in controlling effector T cell responses

Anti-PD-1 and Anti-PD-L1 mAbs Block Distinct Interactions

PD-L1 can still engage B7-1

Anti-PD-1 and Anti-PD-L1 mAbs Block Distinct Interactions

Blocks PD-L1 binding to PD-1 and B7-1

PD-L2 can still engage PD-1

Immune Checkpoints

- Checkpoint pathways
 - CTLA-4 and PD-1
- Other Checkpoints: B7 family and others
- Beyond Checkpoints: Costimulators
- Beyond T cells: NK, DC, Macrophage
- Markers for checkpoint pathway inhibition

Antigen-presenting cell T cell PDL1 or PDL2 PDL1 or PDL2 PD1 CD28 -CD80 or CD86 CD80 or CD86 CTLA4 -B7RP1 ICOS -B7-H3 (B7-H4 HVEM MHC class I or II CD137L CD137 -OX40L OX40 -CD27 -- CD40 CD40L GAL9 AZaR -Cytokines L-6, IL-10,

Other Immune Checkpoints

B7 familly

LAG3, TIM3, ...

Pardoll. Nat Rev Cancer. 2012.

LAG-3 (lymphocyte activation gene-3)

- Ig superfamily member
- Binds MHC class II (like CD4)
- Expressed by activated T cells
- LAG-3 ligation inhibits TCR signaling
- Also expressed by Tregs. Blocking of LAG-3 results in inhibition of suppressive capacity
- Activation of CD8+ T cells leads to LAG-3 upregulation
- LAG-3 may render CD8+ T cells in a tolerogenic state
- Combined anti-PD1 and anti-LAG-3 may have better anti-tumor effects

TIM-3 (T cell immunoglobulin-3)

- Ig superfamily member consists of an N-terminal IgV domain and a mucin domain
- Tim-3 ligand: S-type lectin galectin-9 (Gal-9), soluble molecule widely expressed, upregulated by IFN-γ
- Tim-3 as a negative regulatory molecule: negative regulator of IFN-g-secreting CD4.T helper 1 and CD8.T cytotoxic 1 cells
- Promote development of CD8+ T cell exhaustion
- In vivo blockade results in exacerbated autoimmunity and abrogation of tolerance in experimental models,
- Induce expansion of myeloid-derived suppressor cells (MDSC), expressing high levels of Gla-9
- Tumor infiltrating lymphocytes co-expressed PD-1 and TIM-3

New Combination Immunotherapies:

- Anti-PD1/PDL1 + anti-LAG3
- Anti-PD1/PDL1 + anti-TIM-3
- Anti-PD1 + agonistic anti-GITR
- Anti-PD1 + other agonistic antibodies
- Triple combinations?
 (anti-CTLA4 + anti-PD1 + 3rd new drug)

Combinatorial anti-LAG-3/anti-PD-1 Treatment Inhibits Tumor Growth

Anti-LAG-3 + Anti-PD-1

Effect of Targeting the Tim-3 and PD-1 Signaling Pathways on Tumor Growth.

CT26 tumor cells implanted into wild-type BALB/c mice.

Immune Checkpoint Pathways in clinical trials

Target	Biological function	Antibody or fusion protein	State of clinical development	
B7/lg family	/		200 A 15 A5 A5 A5	
CTLA-4	inhibitory receptor	ipilimumab, fully human IgG4	EMA and FDA approved for melanoma, phase II and III trials in RCC, SCLC/NSCLC, prostate, pancreatic, ovarian, and Merkel cell carcinoma	
		tremelimumab, fully human IgG2	failed in phase III for melanoma, phase II in mesothelioma	
PD-1	inhibitory receptor	nivolumab, fully human IgG4	phase III for melanoma and NSCLC recruiting, phase II in RCC	
		lambrolizumab (MK-3475), humanized IgG4	phase III for melanoma and NSCLC recruiting, phase II in CRC	
		CT-011, humanized IgG	phase II in follicular lymphoma, DLBCL, multiple myeloma, AML, RCC, CRC, pancreatic cancer	
		AMP-224 PD-L1 and human IgG1 fusion protein	no active study	
PD-L1	inhibitory ligand	BMS-936559 (MDX-1105), human IgG4	no recruiting study	
		MEDI4736, engineered human IgG1	phase 1 recruiting	
		MPDL3280A, engineered human IgG1	phase 2 in melanoma, NSCLC	
ICOS	co-stimulatory receptor	MEDI570, fully human IgG1	phase 1 terminated	
		AMG557, fully human IgG2	phase 1b in SLE and psoriasis	
B7-H3	inhibitory ligand	MGA271, humanized IgG1	phase 1b in melanoma	
B7-H4	inhibitory ligand		preclinical development	
LAG3	inhibitory receptor	IMP321, recombinant soluble LAG-3lg fusion protein	phase 2 in melanoma	
TIM3	inhibitory receptor		preclinical development	

Immune Checkpoints

- Checkpoint pathways
 - CTLA-4 and PD-1
- Other Checkpoints: B7 family and others
- Beyond Checkpoints: Costimulators
- Beyond T cells: NK, DC, Macrophage
- Markers for checkpoint pathway inhibition

Immune Costimulation Pathways in Clinical Trials

Positive Costimulation Pathways

NF(R) family	У			
CD40	co-stimulatory receptor	CP-870,893, fully human IgG2	phase 1b in melanoma (+tremelimumab) and pancreatic cancer (+gemcitabine)	
		lucatumumab, fully human IgG1	phase 2 in lymphoma	
		Dacetuzumab (SGN040), humanized IgG1		
CD137	co-stimulatory receptor	Urelumab (BMS-663513), fully human IgG4	phase 2 in melanoma, phase 1b in NSCLC and B-NHL	
		PF-05082566, fully human IgG2	phase 1b in NHL (+rituximab)	
CD27	co-stimulatory receptor	CDX-1127, fully human IgG1	phase 1	
OX40	co-stimulatory receptor	anti-CD40 mouse IgG	phase 1	
OX40L	co-stimulatory ligand	RO4989991, fully human IgG1	phase 2 in allergic asthma	
GITR	co-stimulation	TRX518, engineered human IgG1	Phase 1b in melanoma	

Blank CU. Current Op Oncol. 2014.

T cell Targets for Immunoregulatory Antibody Therapy

Beyond Checkpoints: GITR Co-stimulation

- GITR (Glucocorticoid-Induced Tumor necrosis factor-related Receptor) is constitutively expressed at high levels on Tregs and at low on resting CD4+ and CD8+ T cells, and NK cellss^{1,2}
- GITR expression is highly upregulated on activated CD4+ and CD8+ T cells and NK cells, including tumor infiltrating lymphocytes
- GITR modulation has been indicated as one of the top 25 most promising research areas by the American National Cancer Institute, and clinical trials started²
- GITR ligation by GITRL (or anti-GITR agonist antibodies) provides a costimulatory signal that enhances both CD4+ and CD8+ T cell proliferation and effector functions leading to enhanced cellular and humoral immunity
- In addition, costimulation through GITR has been shown to render naive or effector T cells (Teffs) resistant to the suppressive effects of Tregs
- In contrast, blocking GITR-GITRL signaling with antagonist anti-GITRL antibodies inhibits T lymphocyte activation

^{1.} Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Tone, M., Tone, Y., Adams, E., Yates, S. F., Frewin, M. R., Cobbold, S. P. & Waldmann, H. (2003) *Proc. Natl. Acad. Sci. USA* 100, 15059–15064

^{2.} Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Giuseppe Nocentini, Simona Ronchetti, Maria Grazia Petrillo and Carlo RiccardiBritish *Journal of Pharmacology* (2012) 165 2089–2099 2089

Beyond Checkpoints: CD137/4-1BB Co-stimulation

- CD137/4-1BB, member of the TNF receptor superfamily T cell costimulatory receptor, is induced, when T cells receive antigen-specific signals
- Signals via CD137/4-1BB are costimulatory in nature
- CD137/4-1BB signaling by anti-4-1BB activates various immune competent cells, including T and NK cells, and APCs, leading to activation, cytokine induction, upregulation of CTL activity, and increased survival
- Signals through 4-1BB are more biased toward CD8+ T cells and NK cells, both in vitro, and in vivo
- In vivo administration of agonistic anti-CD137/4-1BB into mice promote CD8+ T cell expansion, and protect against several pathological conditions, including autoimmunity, cancer, and transplantation. The reasons underlying the *in vitro* vs. *in vivo* functions of anti-4-1BB are currently unclear.
- Targeting CD137/4-1BB either by anti- 4-1BB alone, or in combination with other agents, has powerful anticancer properties.
- A fully human IgG4 anti-CD137 antibody is under development with signs of clinical activity and dose-dependent effects.

Immune Checkpoints

- Checkpoint pathways
 - CTLA-4 and PD-1
- Other Checkpoints: B7 family and others
- Beyond Checkpoints: Costimulators
- Beyond T cells: NK, DC, Macrophage
- Markers for checkpoint pathway inhibition

Beyond T Cells: NK, DC, Macrophage

Immuno-modulation des lymphocytes NK

Innate-pharma.com

Anti-CD40 to Stimulate DC and Induced Anti-Tumor Immunity

Anti-CD40 mAb induce objective responses (20%) in pancreatic and ovarian cancers

Pancreatic cancer

PR, N=5 (20%)

Ovarian cancers

PR, N=6 (20%)
1 Ovarian cancer

Anti-tumor mAb + anti-CD47: Boost Macrophages Antibody Dependent Cell Phagocytosis (ADCP)

Block the "Don't Eat Me" Signal

Houot R, Kohrt HE, Marabelle A, Levy R. Targeting immune effector cells to promote antibody-induced cytotoxicity in cancer immunotherapy. *Trends Immunol*. 2011;32:510-6.

Anti-CD47 mAb Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma.

Immune Checkpoints

- Checkpoint pathways
 - CTLA-4 and PD-1
- Other Checkpoints: B7 family and others
- Beyond Checkpoints: Costimulators
- Beyond T cells: NK, DC, Macrophage
- Markers for checkpoint pathway inhibition

Markers for Checkpoint Pathway Inhibition

Issues in clinical trials

- Predict the patients that will benefit from the treatment (to limit unbeneficial tox)
- Define alternative therapeutic approaches for nonresponding patients
- Determine best potential association with tumor targeted therapies
- Define biomarker for immunotherapy treatment suspension

PD-L1 Expression in Non-Small-Cell Lung Cancers.

Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer

ORR according to PD-L1 Expression in Patients with Solid Tumors

Rx Antibody	Testing Method	N	PD-L1 + RR	PD-L1 - RR
Nivolumab ¹	Manual staining – 5H1 5% cutoff Tumor staining	49	13/31 42%	0/18 0%
Nivolumab ²	Dako automated 5% cutoff Tumor staining	38	7/17 41%	3/21 14%
MPDL3280A ³	Automated Roche Dx IHC 1% cutoff Tumor immune cell staining	103	13/36 36%	9/67 13%
lpi/Nivo ⁴	Dako automated 5% cutoff Tumor staining	56	8/14 57%	17/42 40%
MPDL3280A (anti-PD-L1) ⁵		130	26/60 43%	8/70 11%

From: Immuntherapy in Cancer: From Principles to Practice
1. Topalian SL, et al. *N Engl J Med*. 2012;366:2443-54. 2. Grosso J, et al. ASCO 2013. Abstract 3016. 3. Herbst RS, et al. ASCO 2013. Abstract 3000. 4. Sznol M, et al. ASCO 2014. LBA9003. 5. Powles T, *Nature* 2014; 515:558-562

Oncogene versus T cell-Driven PD-L1 Expression Up-Regulation

Nivolumab (Anti-PD1) + Ipilimumab (anti-CTLA4) in advanced melanoma

53 patients included, 40% objective clinical responses, 65% with either immune or clinical response At the highest dose, 53% clinical response with 80% tumor regression

Wolchok SL, et al., N Engl J Med. 2013

Progression-free Survival.

Baseline Density, Location and Proximity of CD8+, PD-1+, PD-L1+ and T-cell Repertoire Predict Anti-PD1 Treatment Outcome.

CD8 T Cell Infiltration Increases Following Anti-PD1 Treatment

Mutational Landscape of Tumors According to Clinical Benefit from Ipilimumab Treatment (melanoma).

Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer

Combinaisons thérapeutiques

Approches explorées¹⁻⁴

• Rationnel, stratégie, séquence ?

^{1.} Drake CG. Ann Oncol 2012;23(suppl 8):viii41-viii46. 2. Hannani D, et al. Cancer J 2011;17:351-8.

^{3.} Ménard C, et al. Cancer Immunol Immunother 2008;57:1579-87. 4. Ribas A, et al. Curr Opin Immunol 2013:25:291-6.

Combined Targeted and Immunotherapy: The Future of Personalized Medicine

