

4^{ème} journées du GREPI

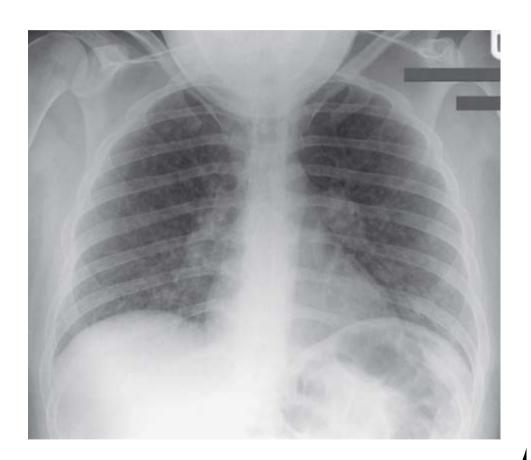
2 décembre 2016

Intérêt de la recherche de virus respiratoires chez un patient non immunodéprimé

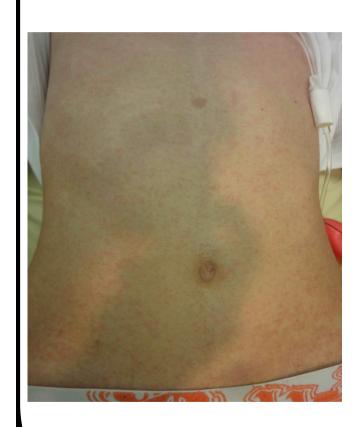
Guillaume Voiriot Réanimation médicochirurgicale Hôpital Tenon, AP-HP

Aucun conflit d'intérêt

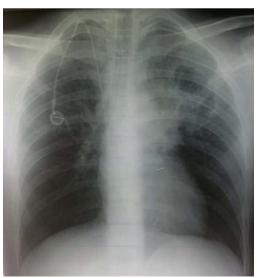
Quels pourraient être les <u>bénéfices</u> à la <u>recherche de virus respiratoires</u> au cours de l'insuffisance respiratoire aigue ?


Quels pourraient être les <u>bénéfices</u> à la <u>recherche de virus respiratoires</u> au cours de l'insuffisance respiratoire aigue ?

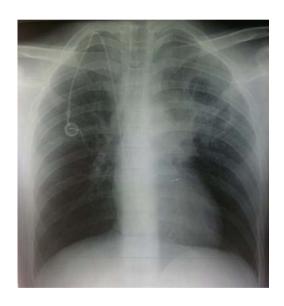
- Diagnostic étiologique
- Diagnostic de gravité
- Gestion du risque viral (traitement, isolement)
- Epargne antibiotique (gain économique, gain écologique)
- Parcours de soins, pronostic


Et aussi veille épidémiologique, contrôle d'une épidémie, amélioration des connaissances...

La clinique...



La clinique...



La clinique...

Les outils paracliniques

Outil diagnostique	D iD	Type de prélèvement	Coût	Délai de réalisation	Intérêts / limites
Sérologie	iD	sang	++	3-4 sem	- Faible technicité- Confirmation (épidémiologie)
Cytologie	iD	respiratoire	+	1-3 h	- Intérêt limité à certains virus (HSV, CMV, VRS, Adénovirus)
Antigène	D	respiratoire	++	1-3 h	- Faisable sur cellules lysées ou altérées - Technicité élevée si IF associée
Culture virale	D	respiratoire	++	2-10 j	Gold standardHaute technicité, milieux de culturesFaible sensibilité pour certains virus
mPCR respiratoire	D	respiratoire	++++	1-10 h	- Sensibilité élevée - Large panel viral (+ bactéries)

Les mPCR automatisées

- approche syndromique (insuffisance respiratoire aigue suspecte de cause virale)
- extraction et PCR intégrées
- totalement automatisées
- personnel polyvalent ou peu spécialisé
- accessible aux laboratoires polyvalents
- accessibilité étendue, probablement 24/7 dans le futur

Les mPCR automatisées

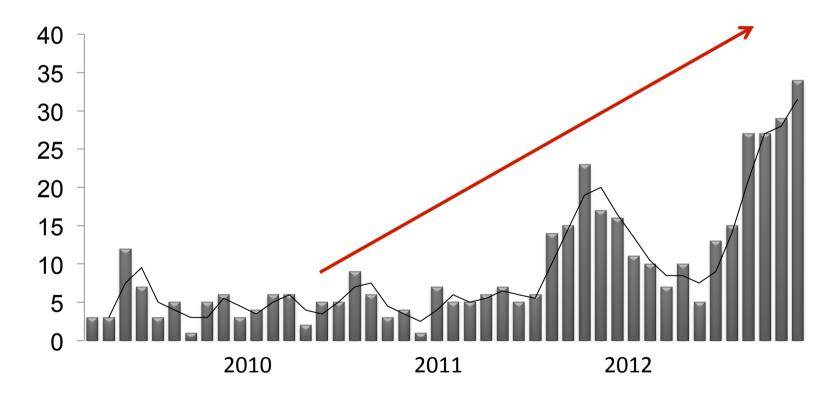

	Time to result	Type of technology	Targets	Sensitivity	Specificity
Cepheid Xpert MRSA/ SA SSTI ⁶²	1 h	Automated sample preparation of respiratory specimen, real-time PCR and detection using molecular beacon technology	MSSA and MRSA	99-0% compared with quantitative culture of endotracheal aspirates	72-2% compared with quantitative culture of endotracheal aspirates
Curetis Unyvero Pneumonia P50 Test ⁶³	4 h	Multiplex endpoint PCR and amplicon detection by hybridisation to oligo probes spotted on membrane arrays direct from respiratory samples	Detection of 17 bacterial and fungal pathogens in addition to 22 antibiotic resistance genes	80.9% overall; target specific values 50–100%	99.0% overall, target specific values 72.3–100%
Biofire Filmarray Respiratory Panel ^{64,65}	1 h	Pouch format comprising nucleic acid extraction, and nested PCR from nasopharyngeal swabs	20 targets including respiratory viruses, Bordetella pertussis, Mycoplasma pneumoniae and Chlamydophila pneumoniae	84-100%	98–100%

Table 2. Comparisons of US Food and Drug Administration—Approved Respiratory Panels

					Luminex xTAG	
Pathogens	FilmArray	eSensor	Verigene	RVP	RVP Fast	NxTAG
Viral						
Adenovirus	•	•	•	•	•	•
Coronavirus HKU1	•					•
Coronavirus NL63	•					•
Coronavirus 229E	•					•
Coronavirus OC43	•					•
Human bocavirus						•
Human metapneumovirus	•	•	•	•	•	•
Influenza A	•	•	•	•	•	•
Subtype H1	•	•	•	•	•	•
Subtype H3	•	•	•	•	•	•
Subtype 2009 H1N1	•	•				
Influenza B	•	•	•	•	•	•
Parainfluenza 1	•	•	•	•		•
Parainfluenza 2	•	•	•	•		•
Parainfluenza 3	•	•	•	•		•
Parainfluenza 4	•		•			•
Respiratory syncytial virus	•				•	•
Respiratory syncytial virus A		•	•	•		•
Respiratory syncytial virus B		•	•	•		•
Rhinovirus/enterovirus		•	•	•	•	•
Bacteria						
Chlamydia pneumoniae	•					•
Mycoplasma pneumoniae	•					•
Bordetella pertussis	•		•			
Bordetella parapertussis/Bordetella bronchiseptica			•			
Bordetella holmesii			•			

Quels pourraient être les <u>bénéfices</u> à la <u>recherche de virus respiratoires</u> (par mPCR) au cours de l'insuffisance respiratoire aigue ?

- Diagnostic étiologique
- Diagnostic de gravité
- Gestion du risque viral (traitement, isolement)
- Epargne antibiotique (gain économique, gain écologique)
- Parcours de soins, pronostic

Nombre de documentation virale respiratoire en Réanimation Médicale à l'hôpital Bichat (AP-HP)

	France, 2016	Finlande, 2014	Chili, 2013	Corée, 2012
Site de prise en charge	réa	réa	réa	réa
N patients	174	49	83	198
Aucune (%)	17	8	35	33
Bactéries (%)	53	82	43	36
S. pneumoniae (%)	23	57	21	12
H. influenzae (%)	8	4	1	1
S. aureus (%)	7	4	2	6
Legionella sp. (%)	5	0	5	2
Mycoplasma (%)	3	16	9	1
P. aeruginosa (%)	4	2	0	5
Virus (%)	56	49	39	36
Virus + bactérie (%)	26	39	17	9
Rhinovirus (%)	13	31	12	9
PiV (%)	2	2	0	7
hMPV (%)	7	0	12	7
Influenza (%)	21	2	8	7
VRS (%)	5	2	14	5

- Études observationnelles
- de type avant / après ou comparant deux techniques de PCR multiplex
- situations cliniques variées
- -> Gain en sensibilité pour le diagnostic étiologique
- → Réduction du délai diagnostique
- → Disponibilité accrue des résultats aux cliniciens

Johansson N Clin Infect Dis **2010**; 50:202-9
Templeton KE Clin Infect Dis **2005**; 41:345-51
Gadsby NJ Clin Infect Dis **2016**; 62:817-23
Hammond SP J Clin Microbiol **2012**; 50:3216-21
Rand KH J Clin Microbiol **2011**; 49:2449-53
Xu M Am J Clin Pathol **2013**; 139:118-123
Rogers BB Arch Pathol Lab Med **2015**; 139:636-641

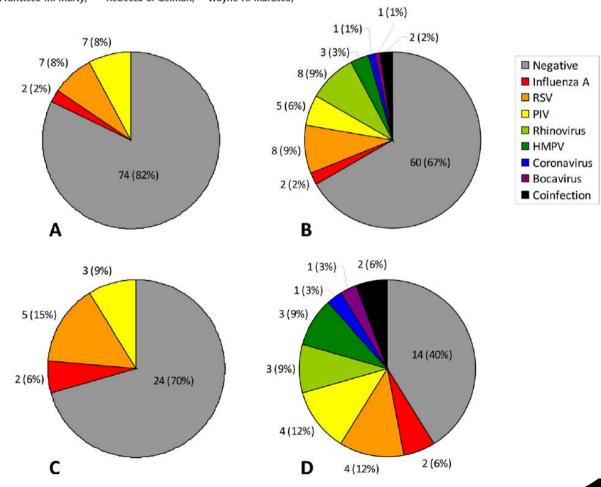
Technique	Situation clinique	Type de prélèvement	Références
mPCR vs techniques conventionnelles	Pneumonie aigue communautaire hospitalisée	Sécrétions nasopharyngées 184 patients	Johansson N Clin Infect Dis 2010 ; 50:202-9
	(adulte)	Sécrétions nasopharyngées 105 patients	Templeton KE <i>Clin Infect Dis</i> 2005 ; 41:345-51
		Crachat (96%) et aspiration trachéale (4%) 323 patients	Gadsby NJ <i>Clin Infect Dis</i> 2016 ; 62:817-23
mPCR (FilmArray RP) vs techniques conventionnelles	Oncohématologie adulte (symptômes voies aériennes supérieures et inférieures; surveillance)	Aspiration nasopharyngée (38%) et LBA (62%) 87 patients (90 prélèvements)	Hammond SP <i>J Clin Microbiol</i> 2012 ; 50:3216-21
mPCR (FilmArray RP et xTAG RVP) vs culture virale/	200 prélèvements cliniques	Écouvillons nasopharyngés, n=101; prélèvements de gorge, n=25; divers, n=15	Rand KH <i>J Clin Microbiol</i> 2011 ; 49:2449-53
détection d'antigènes		LBA, n=45; brosse, n=2; aspiration bronchique, n=11; autopsie, n=1	
mPCR (FilmArray RP) vs Direct Fluorescent Assay	Enfants, signes infectieux respiratoires, période hivernale	Écouvillons nasopharyngés 2537 vs 1399 échantillons	Xu M <i>Am J Clin Pathol</i> 2013 ; 139:118-123
PCR Influenza A et B, VRS (Focus Diagnostics, Cypress, CA) vs FilmArray RP	Enfants immuno compétents, infection respiratoire haute ou basse, période hivernale	Écouvillons nasopharyngés 365 vs 771 échantillons	Rogers BB <i>Arch Pathol Lab Med</i> 2015 ; 139:636-641

Improved Diagnosis of the Etiology of Community-Acquired Pneumonia with Real-Time Polymerase Chain Reaction

Kate E. Templeton, Sitha A. Scheltinga, Willian C. J. F. M. van den Eeden,² A. Willy Graffelman,³ Peterhans J. van den Broek,² and Eric C. J. Claas¹

Clinical Infectious Diseases 2005; 41:345-51

N=105	Conv	PCR	р
Influenza	8	9	0,8
Rhinovirus	2	18	< 0,001
Coronavirus	0	14	< 0,001
Mixed pathogen	3	28	< 0,001
No pathogen	53	25	< 0,001


Technique	Situation clinique	Type de prélèvement	Références
mPCR vs techniques conventionnelles	Pneumonie aigue communautaire hospitalisée	Sécrétions nasopharyngées 184 patients	Johansson N Clin Infect Dis 2010 ; 50:202-9
	(adulte)	Sécrétions nasopharyngées 105 patients	Templeton KE Clin Infect Dis 2005; 41:345-51
		Crachat (96%) et aspiration trachéale (4%) 323 patients	Gadsby NJ Clin Infect Dis 2016 ; 62:817-23
mPCR (FilmArray RP) vs techniques conventionnelles	Oncohématologie adulte (symptômes voies aériennes supérieures et inférieures; surveillance)	Aspiration nasopharyngée (38%) et LBA (62%) 87 patients (90 prélèvements)	Hammond SP <i>J Clin Microbiol</i> 2012 ; 50:3216-21
mPCR (FilmArray RP et xTAG RVP) vs culture virale/	200 prélèvements cliniques	Écouvillons nasopharyngés, n=101; prélèvements de gorge, n=25; divers, n=15	Rand KH <i>J Clin Microbiol</i> 2011 ; 49:2449-53
détection d'antigènes		LBA, n=45; brosse, n=2; aspiration bronchique, n=11; autopsie, n=1	
mPCR (FilmArray RP) vs Direct Fluorescent Assay	Enfants, signes infectieux respiratoires, période hivernale	Écouvillons nasopharyngés 2537 vs 1399 échantillons	Xu M <i>Am J Clin Pathol</i> 2013 ; 139:118-123
PCR Influenza A et B, VRS (Focus Diagnostics, Cypress, CA) vs FilmArray RP	Enfants immuno compétents, infection respiratoire haute ou basse, période hivernale	Écouvillons nasopharyngés 365 vs 771 échantillons	Rogers BB <i>Arch Pathol Lab Med</i> 2015 ; 139:636-641

Respiratory Virus Detection in Immunocompromised Patients with FilmArray Respiratory Panel Compared to Conventional Methods

Sarah P. Hammond, ^{a,b,c} Lisa S. Gagne, ^a Shannon R. Stock, ^b Francisco M. Marty, ^{a,b,c} Rebecca S. Gelman, ^{b,c} Wayne A. Marasco, ^{b,c} Mark A. Poritz, ^d and Lindsey R. Baden ^{a,b,c}

Journal of Clinical Microbiology p. 3216-3221

- 87 patients d'onco-hémato hospitalisés
- Comparaison de la sensiblité de l'IF vs. la mPCR respiratoire (quelque soit la situation clinique)
- Panel A et B: tous prélèvements
- Panels C et D: prélèvements NP seulement

Technique	Situation clinique	Type de prélèvement	Références
mPCR <i>vs</i> techniques conventionnelles	Pneumonie aigue communautaire hospitalisée	Sécrétions nasopharyngées 184 patients	Johansson N Clin Infect Dis 2010 ; 50:202-9
	(adulte)	Sécrétions nasopharyngées 105 patients	Templeton KE <i>Clin Infect Dis</i> 2005 ; 41:345-51
		Crachat (96%) et aspiration trachéale (4%) 323 patients	Gadsby NJ Clin Infect Dis 2016 ; 62:817-23
mPCR (FilmArray RP) vs techniques conventionnelles	Oncohématologie adulte (symptômes voies aériennes supérieures et inférieures; surveillance)	Aspiration nasopharyngée (38%) et LBA (62%) 87 patients (90 prélèvements)	Hammond SP <i>J Clin Microbiol</i> 2012 ; 50:3216-21
mPCR (FilmArray RP et xTAG RVP) vs culture virale/	200 prélèvements cliniques	Écouvillons nasopharyngés, n=101; prélèvements de gorge, n=25; divers, n=15	Rand KH <i>J Clin Microbiol</i> 2011 ; 49:2449-53
détection d'antigènes		LBA, n=45; brosse, n=2; aspiration bronchique, n=11; autopsie, n=1	
mPCR (FilmArray RP) vs Direct Fluorescent Assay	Enfants, signes infectieux respiratoires, période hivernale	Écouvillons nasopharyngés 2537 vs 1399 échantillons	Xu M Am J Clin Pathol 2013 ; 139:118-123
PCR Influenza A et B, VRS (Focus Diagnostics, Cypress, CA) vs FilmArray RP	Enfants immuno compétents, infection respiratoire haute ou basse, période hivernale	Écouvillons nasopharyngés 365 vs 771 échantillons	Rogers BB <i>Arch Pathol Lab Med</i> 2015 ; 139:636-641

JOURNAL OF CLINICAL MICROBIOLOGY, July 2011, p. 2449–2453 0095-1137/11/\$12.00 doi:10.1128/JCM.02582-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Vol. 49, No. 7

Comparison of Two Multiplex Methods for Detection of Respiratory Viruses: FilmArray RP and xTAG RVP[▽]†

Kenneth H. Rand, 1* Howard Rampersaud, 2 and Herbert J. Houck 1

TABLE 1. Viruses detected by FilmArray RP, xTAG RVP, and standard culture/antigen

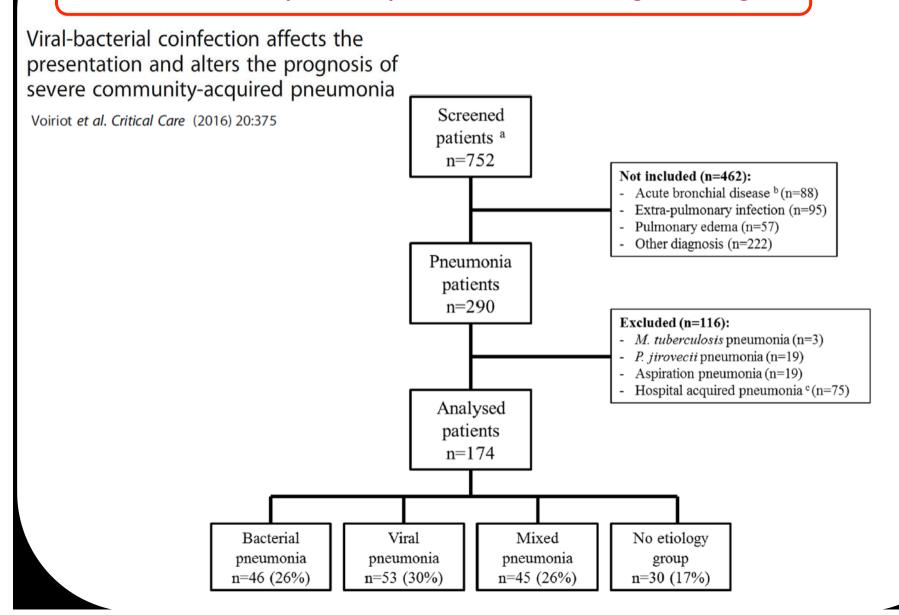
	No. detected by:				
Virus	Culture/antigen $(n = 185)^a$	FilmArray RP $(n = 200)^b$	$ xTAG RVP (n = 200)^c $		
Influenza A virus	32	32	33		
Influenza B virus	7	7	7		
RSV	36	45	37		
Rhinovirus/enterovirus	6	43	41		
Parainfluenza virus	14	16	15		
Adenovirus	11	10	10		
Metapneumovirus		7	6		
None (negative)	82	62	68		
Total no. of viruses	106	160	149		

Technique	Situation clinique	Type de prélèvement	Références
mPCR vs techniques conventionnelles	Pneumonie aigue communautaire hospitalisée	Sécrétions nasopharyngées 184 patients	Johansson N Clin Infect Dis 2010 ; 50:202-9
	(adulte)	Sécrétions nasopharyngées 105 patients	Templeton KE Clin Infect Dis 2005; 41:345-51
		Crachat (96%) et aspiration trachéale (4%) 323 patients	Gadsby NJ <i>Clin Infect Dis</i> 2016 ; 62:817-23
mPCR (FilmArray RP) vs techniques conventionnelles	Oncohématologie adulte (symptômes voies aériennes supérieures et inférieures; surveillance)	Aspiration nasopharyngée (38%) et LBA (62%) 87 patients (90 prélèvements)	Hammond SP <i>J Clin Microbiol</i> 2012 ; 50:3216-21
mPCR (FilmArray RP et xTAG RVP) vs culture virale/	200 prélèvements cliniques	Écouvillons nasopharyngés, n=101; prélèvements de gorge, n=25; divers, n=15	Rand KH <i>J Clin Microbiol</i> 2011 ; 49:2449-53
détection d'antigènes		LBA, n=45; brosse, n=2; aspiration bronchique, n=11; autopsie, n=1	
mPCR (FilmArray RP) vs Direct Fluorescent Assay	Enfants, signes infectieux respiratoires, période hivernale	Écouvillons nasopharyngés 2537 vs 1399 échantillons	Xu M <i>Am J Clin Pathol</i> 2013 ; 139:118-123
PCR Influenza A et B, VRS (Focus Diagnostics, Cypress, CA) vs FilmArray RP	Enfants immuno compétents, infection respiratoire haute ou basse, période hivernale	Écouvillons nasopharyngés 365 vs 771 échantillons	Rogers BB <i>Arch Pathol Lab Med</i> 2015 ; 139:636-641

Quels pourraient être les <u>bénéfices</u> à la <u>recherche de virus respiratoires</u> (par mPCR) au cours de l'insuffisance respiratoire aigue ?

- Diagnostic étiologique
- Diagnostic de gravité
- Gestion du risque viral (traitement, isolement)
- Epargne antibiotique (gain économique, gain écologique)
- Parcours de soins, pronostic

Incidence and characteristics of viral community-acquired pneumonia in adults


L C Jennings, ^{1,2} T P Anderson, ¹ K A Beynon, ¹ A Chua, ¹ R T R Laing, ³ A M Werno, ^{1,2} S A Young, ¹ S T Chambers, ² D R Murdoch ^{1,2}

Thorax 2008

Table 5 Independent a	associations with	disease	severity
-----------------------	-------------------	---------	----------

Outcome	Variable	OR (95% CI)	p Value
Severe disease	Age (per 1 year increase)	1.09 (1.05 to 1.14)	< 0.001
(CURBage score)	Male sex	3.26 (1.36 to 7.82)	0.008
	Rhinovirus infection (with concomitant pneumococcal infection)	9.95 (1.31 to 75.34)	0.03
	Rhinovirus infection (without concomitant pneumococcal infection)	0.18 (0.02 to 1.81)	0.15
Severe disease	Age (per 1 year increase)	1.17 (1.11 to 1.23)	< 0.001
(PSI risk class)	Male sex	2.50 (1.04 to 5.98)	0.04
	Current smoker	3.28 (1.03 to 10.45)	0.05
	Rhinovirus infection (with concomitant pneumococcal infection)	11.52 (1.09 to 121.89)	0.04
	Rhinovirus infection (without concomitant pneumococcal infection)	0.18 (0.04 to 0.87)	0.03

[.] Etude prospective monocentrique observationnelle, 304 patients hospitalisés pour une PAC.

Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia

Patients	Tous	Groupe	Groupe	Groupe	Groupe	р
	(n=174)	bactérien	viral	mixte	sans étiologie	
		(n=46)	(n=53)	(n=45)	(n=30)	
Gravité à l'admission en réanimation						
Choc	32 (18.4)	14 (30.4)	3 (5.7)	11 (24.4)	4 (13.3)	< 0.01
SAPS II	38 [27;55]	39 [32;60]	36 [26;48]	46 [34;59]	33 [18;46]	0.02
PSI classes IV-V (admission hôpital)	114 (65.5)	31 (67.4)	33 (62.3)	36 (80)	14 (46.7)	0.03
Défaillances d'organes et thérapeutiques de support en réanimation						
Ventilation mécanique	98 (56.3)	28 (60.9)	22 (41.5)	36 (80)	12 (40)	<0.01
SDRA	60 (34.5)	17 (37)	13 (24.5)	22 (48.9)	8 (26.7)	0.06
Pronostic						
Durée de ventilation mécanique	9 [5;13]	6.5 [3;12.5]	7 [4;12]	9 [6;14]	10 [7.5;17.5]	0.34
Mortalité hospitalière	30 (17.2)	6 (13)	6 (11.3)	13 (28.9)	5 (16.7)	0.10
Pronostic altéré	74 (42.5)	18 (39.1)	15 (28.3)	31 (68.9)	10 (33.3)	<0.01

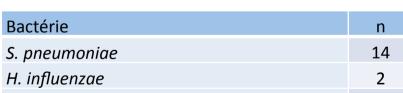
Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia

Facteurs de risque indépendants de pronostic altéré (VM > 7 jours ou décès en réanimation)

Variables	OR	95% CI	р
Diagnostic microbiologique			
Bactérienne	Ref		
Virale	0.573	0.177 - 1.858	0.35
Mixte	3.577	1.158 - 11.043	0.027
Sans étiologie	1.642	0.456 - 5.907	0.45
Coronaropathie	3.609	1.230 – 11.390	0.02
Choc à l'admission en réa	5.021	1.551 – 16.258	0.007
Lactate dehydrogenase > 245 U/L	3.479	1.202 – 10.073	0.02
PSI classes IV-V à l'admission à l'hôpital	5.054	1.908 – 13.385	0.001

Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia

Analysed patients n=174


Matching Pneumonie

bactérienne

n=33

Deux bactéries

Matching Pneumonie mixte n=33

S. aureus	2
Streptococcus	1
C. Pneumoniae / M. pneumoniae	1
L. pneumophila	1
P. aeruginosa	1
Flore oropharyngée	4

Virus	n
Rhinovirus	11
Influenza	9
Coronavirus	4
hMPV	4
Parainfluenza	1
Rhinovirus + hMVP	1
VRS	2
VRS + coronavirus	1

Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia

Patients	Groupe bactérien (n=33)	Groupe mixte (n=33)	р
Age, a	65 [53 ; 75]	65 [52 ; 76]	0.87
Immunodépression	13 (39.4)	10 (30.3)	0.61
Pneumonie associée aux soins	16 (48.5)	16 (48.5)	1.00
Antibiotiques avant l'admission en réa	8 (24.2)	9 (27.3)	1.00
Anomalies radiologiques à l'admission			
Infiltrats alvéolo-interstitiels	9 (27.3)	18 (60)	<0.01
Thérapeutiques de support			
Ventilation mécanique	19 (57.6)	26 (78.8)	0.14
Pronostic			
Durée de ventilation mécanique, d	5 [3 ; 17]	9.5 [6 ; 15]	0.72
Mortalité hospitalière	4 (12.1)	11 (33.3)	0.07
Pronostic altéré	12 (36.4)	23 (69.7)	<0.01

Quels pourraient être les <u>bénéfices</u> à la <u>recherche de virus respiratoires</u> (par mPCR) au cours de l'insuffisance respiratoire aigue ?

- Diagnostic étiologique
- Diagnostic de gravité
- Gestion du risque viral (traitement, isolement)
- Epargne antibiotique (gain économique, gain écologique)
- Parcours de soins, pronostic

La recherche de virus par mPCR facilite la gestion du risque viral et est associée à une épargne antibiotique et à une maitrise des couts

Études observationnelles et interventionnelles chez l'enfant

avant/après, techniques rapides Influenza A vs. PCR Influenza A et B

Département d'urgence pédiatrique

Impact diagnostique et thérapeutique

- ☑ réduction du nombre de tests de laboratoire
- ✓ réduction du nombre de radiographies
- ✓ réduction de l'utilisation des antibiotiques
- ✓ augmentation de l'utilisation des antiviraux
- ✓ réduction de la durée de séjour aux urgences

Noyola DE *Pediatr Infect Dis J* **2000**; 19(4):303-7 Sharma V Arch Pediatr Adolesc Med **2002**; 156:41-3

Esposito S Arch Dis Childhood 2003; 88:525-6

Bonner AB *Pediatrics* **2003**; 112:363-7

Poehling KA Arch Pediatr Adolesc Med 2006; 160:713-8

La recherche de virus par mPCR facilite la gestion du risque viral et est associée à une épargne antibiotique et à une maitrise des couts

- Études observationnelles chez l'enfant et chez l'adulte
- de type avant / après, comparant deux techniques de PCR multiplex
- situations cliniques variées
- → Maitrise du risque infectieux viral
 - isolement ciblé précoce
 - traitement antiviral administré « à bon escient » et dans les meilleurs délais

Rappo U. J Clin Microbiol **2016**; 54(8):2096-2103 Rogers B.B. Arch Pathol Lab Med **2015**; 139:636-641 Pettit NN J Med Microbiol **2015**; 64(Pt 3):312-3 Xu M Am J Clin Pathol **2013**; 139:118-123

Impact of a Rapid Respiratory Panel Test on Patient Outcomes

Beverly B. Rogers, MD; Prabhu Shankar, MD; Robert C. Jerris, PhD; David Kotzbauer, MD; Evan J. Anderson, MD; J. Renee Watson, BSM; Lauren A. O'Brien, PhD; Francine Uwindatwa, MS, MBA; Kelly McNamara, BSBA; James E. Bost, PhD Arch Pathol Lab Med—Vol 139, May 2015

- Étude rétrospective avant / après (Nov. 2011 Janv. 2012 / Nov. 2012 Janv. 2013)
 - Focus Diagnostics + PCR Prodesse vs. PCR multiplex FilmArray rapid respiratory panel (BioFire Diagnostics)
- Sujets immunocompétents âgés de 3 mois à 21 ans hospitalisés pour une infection respiratoire haute ou basse non compliquée; co-infections exclues

Impact of a Rapid Respiratory Panel Test on Patient Outcomes

Beverly B. Rogers, MD; Prabhu Shankar, MD; Robert C. Jerris, PhD; David Kotzbauer, MD; Evan J. Anderson, MD; J. Renee Watson, BSM; Lauren A. O'Brien, PhD; Francine Uwindatwa, MS, MBA; Kelly McNamara, BSBA; James E. Bost, PhD

Arch Pathol Lab Med-Vol 139, May 2015

Variable	Tous prélèvements			
	Avant	Après	P	
Délai d'obtention des résultats (min), moy (range)	1119 (255-3705)	383 (72-3143)	<0,001	
Résultats disponibles aux urgences, n (%)	49 (13,4)	398 (51,6)	<0,001	
Durée du maintien de l'isolement (h), moy (sd)	73 (41)	70 (38)	0,27	
Nombre d'antibiotiques prescrits, n (%)	268 (73,4)	555 (72)	0,61	
Durée de l'antibiothérapie (j), moy (sd)	3,2 (1,6)	2,8 (1,6)	0,003	
Durée de séjour aux urgences (min), moy (sd)	256 (97)	282 (115)	0,002	
Durée de séjour à l'hôpital (j), moy (sd)	3,4 (1,7)	3,2 (1,6)	0,16	

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

Urania Rappo, ^{a*} Audrey N. Schuetz, ^{b,c*} Stephen G. Jenkins, ^{b,c} David P. Calfee, ^b Thomas J. Walsh, ^{b,d} Martin T. Wells, ^e James P. Hollenberg, ^a Marshall J. Glesby ^b

- Etude avant (Antigènes ± Prodesse PCR PIV-hMPV ± Luminex PCR) / après (Film Array PCR) (Nov 2010-Mars 2011 / Fev 2012-Juin 2012)
- Patients ≥ 18 ans, présentant un tableau de virose des voies aréiennes, consultant au SAU ou hospitalisés, et testés durant les 48 premières heures (écouvillon nasopharyngé ou LBA)

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

	No. (%) in season:		
Characteristic	1 (n = 198)	2 (n = 139)	
Positive test result			
Rapid antigen (alone)	51 (26)		
Prodesse (alone)	56 (28)		
Rapid antigen with reflex to Prodesse ^a	78 (39)		
Discordant (rapid antigen negative,	64		
Prodesse positive)			
Concordant (rapid antigen	14		
positive, Prodesse positive)	11111		
Luminex	13 (7)		
Full-panel FilmArray		131 (94)	
Individual orders for influenza virus		8 (6)	
or RSV FilmArray			
Viruses detected			
Influenza A virus	$142 (72)^b$	36 (26) ^c	
Influenza B virus	16 (8)	18 (13)	
RSV	29 (15)	9 (6)	
Human metapneumovirus	3(2)	27 (19)	
Rhinovirus/enterovirus	8 (4)	42 (30)	
Adenovirus	1 (0.5)	1 (0.7)	
Coronavirus NL63	NA^d	4(3)	
Coronavirus HKU1	NA	2(1)	
Parainfluenza virus 1	0	0	
Parainfluenza virus 2	0	1 (0.7)	
Parainfluenza virus 3	0	3(2)	
Parainfluenza virus 4	NA	1 (0.7)	

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

Traitement antiviral (influenza)

Variable	Influenza	р
Patients ayant reçu au moins 1 dose d'antiviral à l'hôpital, n (%) Tests conventionnels, n=158 FilmArray, n=54	96 (61) 33 (61)	0,96
Délai d'initiation du traitement antiviral (h), médiane Tests conventionnels, n=158 FilmArray, n=54	9,5 5,2	0,74
Délai d'initiation du traitement antiviral (h), médiane Tests conventionnels, sous groupe discordant, n=60 FilmArray, n=54	15,9 5,2	0,013
Patients traités par antiviral durant l'hospitalisation, n (%) Tests conventionnels, sous groupe discordant, n=60 FilmArray, n=54	33 (55) 40 (74)	0,034

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

Parcours de soin

Variable	Virus Influenza	р
Non admission, n (%) Tests conventionnels, n=158 FilmArray, n=54	50 (50) 19 (61)	0,25
Non admission, n (%) Tests conventionnels, sous groupe discordant, n=46 FilmArray, n=54	17 (37) 19 (61)	0,036
Durée de séjour (h), médiane [IQR] Tests conventionnels, n=158 FilmArray, n=54	49,8 [9,6-134,4] 38,8 [8,2-116,2]	0,63
Durée de séjour (h), médiane [IQR] Tests conventionnels, sous groupe discordant, n=46 FilmArray, n=54	56,8 [12,8-123,3] 38,8 [8,2-116,2]	0,26

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

Traitement antibiotique

Variable	Influenza	р
Patients ayant reçu au moins 1 dose d'atb à l'hôpital, n (%) Tests conventionnels, n=158 FilmArray, n=54	89 (56) 30 (56)	0,92
Durée de traitement atb (h), médiane Tests conventionnels, n=158 FilmArray, n=54	48,1 23,7	0,24
Durée de traitement atb (h), médiane Tests conventionnels, sous groupe discordant, n=46 FilmArray, n=54	58,1 23,7	0,17
Patients traités par atb durant l'hospitalisation, n (%) Tests conventionnels, sous groupe discordant, n=46 FilmArray, n=54	17 (37) 13 (24)	0,15

Problème:

La recherche de virus respiratoires par mPCR pourrait être bénéfique en terme d'épargne antibiotique... sous réserve de prendre en compte son résultat!

The Use of Antimicrobial Agents after Diagnosis of Viral
Respiratory Tract Infections in Hospitalized Adults: Antibiotics
or Anxiolytics?

Infect Control Hosp Epidemiol. 2010

Kevin T. Shiley, MD, Ebbing Lautenbach, MD, MPH, MSCE, and Ingi Lee, MD, MSCE

- Étude rétrospective sur 2 ans
- 196 patients admis dans un tableau d'infection virale des voies aériennes, avec mPCR nasopharyngée positive pour au moins un virus (influenza, parainfluenza, adénovirus, VRS)
- Parmi les 132 patients avec une radiographie thoracique normale, l'antibiothérapie était poursuivie chez 79 patients (60%)

Problème:

La recherche de virus respiratoires par mPCR pourrait être bénéfique en terme

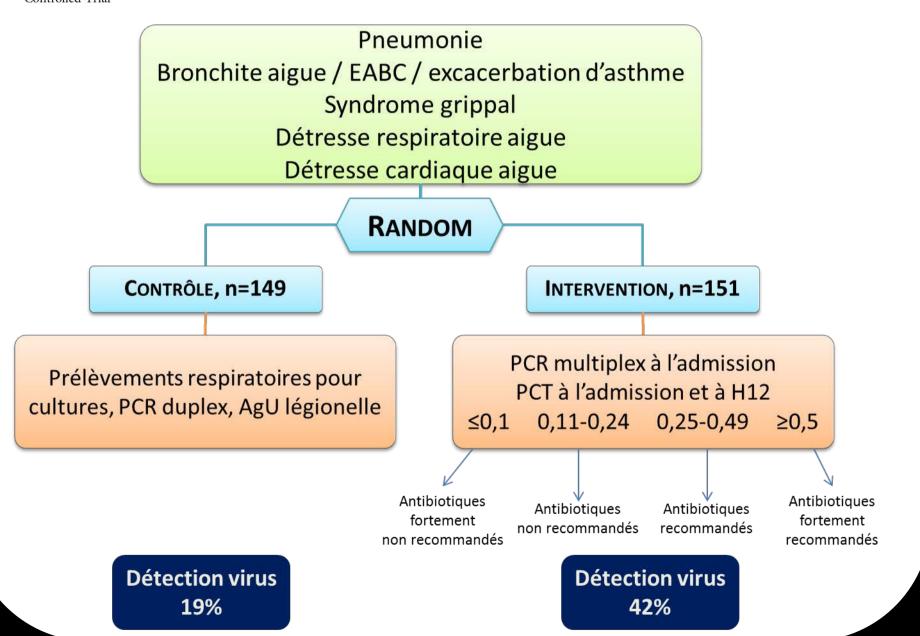
<u>d'épargne antibiotique... sous réserve de prendre en compte son résultat!</u>

Impact of Rapid Diagnosis on Management of Adults Hospitalized With Influenza

Ann R. Falsey, MD; Yoshihiko Murata, MD, PhD; Edward E. Walsh, MD Arch Intern Med. 2007;167:354-360

- Étude rétrospective sur 4 ans
- 166 patients admis dans un tableau d'infection virale des voies aériennes, avec PCR influenza nasopharyngée
- 44 patients avaient une PCR influenza positive et un risque d'infection bactérienne évalué faible; l'antibiothérapie était pourtant poursuivie chez 39 patients (88%), et 28 patients (64%) quittaient l'hôpital sous antibiotique

La prise en compte du résultat de la mPCR pourrait permettre une épargne antibiotique


Serum Procalcitonin Measurement and Viral Testing to Guide Antibiotic Use for Respiratory Infections in Hospitalized Adults: A Randomized Controlled Trial

Angela R. Branche,¹ Edward E. Walsh,¹.³ Roberto Vargas,⁴ Barbara Hulbert,⁴ Maria A. Formica,³ Andrea Baran,² Derick R. Peterson,² and Ann R. Falsey¹.³

The Journal of Infectious Diseases® 2015;212:1692–700

- Étude ouverte randomisée contrôlée
 - stratégie guidée sur une combinaison PCT/PCR multiplex
 - stratégie conventionnelle : PCR influenza et VRS
- Patients adultes immunocompétents hospitalisés pour une infection des voies respiratoires
 « non pneumonique » sans critères de gravité et sans antibiothérapie préalable
- Critère de jugement: exposition aux antibiotiques

Serum Procalcitonin Measurement and Viral Testing to Guide Antibiotic Use for Respiratory Infections in Hospitalized Adults: A Randomized Controlled Trial

Serum Procalcitonin Measurement and Viral Testing to Guide Antibiotic Use for Respiratory Infections in Hospitalized Adults: A Randomized Controlled Trial

	PCT et PCR	Contrôle
Diagnostic, n (%)		
Pneumonie	28 (19)	29 (19)
Grippe	9 (6)	11 (7)
Décompensation cardiaque	9 (6)	16 (11)
Exacerbation BPCO	58 (39)	58 (38)
Astme	32 (12)	27 (18)
PCT initiale, médiane [IQR]	0,05 [0,05-0,11]	0,05 [0,05-0,11]
≤0,10, n (%)	112 (74)	107 (74)
0,11-0,24, n (%)	14 (9)	19 (13)

Serum Procalcitonin Measurement and Viral Testing to Guide Antibiotic Use for Respiratory Infections in Hospitalized Adults: A Randomized Controlled Trial

Characteristic	Intervention Group	Nonintervention Group	₽ Value
Subjects, no.	151	149	
Antibiotic use for ≤48 h	69 (46)	61 (41)	.42
Discharged receiving oral antibiotics	51 (35) ^a	64 (44) ^b	.09
Total antibiotic-days	3.0 (1.0–7.0)	4.0 (0.0-8.0)	.71
	Intervention Subgroup Positive for Virus With Low PCT Values	Nonintervention Group	
Subjects, no.	49	149	
Antibiotic use for ≤48 h	28 (57)	61 (41)	.07
Discharged receiving oral antibiotics	10 (20)	64 (45) ^b	.002
Total antibiotic-days	2.0 (1.0–6.0)	4.0 (0.0-8.0)	.11
	Intervention Subgroup Adherent to Algorithm	Nonintervention Group	
Subjects. no.	96	149	
Antibiotic use for ≤48 h	63 (65)	61 (41)	.002
Discharged receiving oral antibiotics	19 (20) ^c	64 (45) ^b	.002
Total antibiotic-days	2.0 (0.0-3.0)	4.0 (0.0-8.0)	.004

Perspectives: la mPCR élargie

- Détection bactérienne semi quantitative avec profil de résistance
- Détection qualitative des bactéries
 « atypiques »
- Détection virale et fungi
- LBA, aspiration
 bronchique, crachat
- → très bonne sensibilité
- → impact thérapeutique et pronostique (en réanimation)

Graham B **ECCMID 2016**, #2021 Alberti-Segui C **ECCMID 2016**, #2490 Martinez RM **CVS 2016**, C368

THE FILMARRAY LOWER RESPIRATORY TRACT INFECTION (LRTI) PANEL

Simultaneous detection of 30 Pathogens and 7 Antibiotic Resistance Markers:

Bacteria

- Acinetobacter calcoaceticusbaumannii complex
- · Chlamydophila pneumoniae
- Enterobacter cloacae/aerogenes
- · Escherichia coli
- · Haemophilus influenzae
- Klebsiella oxytoca
- · Klebsiella pneumoniae
- · Legionella pneumophila
- · Moraxella catarrhalis

- · Mycoplasma pneumoniae
- · Proteus spp.
- Pseudomonas aeruginosa
- · Serratia marcescens
- · Staphylococcus aureus
- · Stenotrophomonas maltophilia
- · Streptococcus agalactiae
- · Streptococcus pneumoniae
- · Streptococcus pyogenes

Antibiotic Resistance Markers

- CTX-M (ESBL)
- · IMP (Carbapenem resistance)
- KPC (Carbapenem resistance)
- · mecA/C MREJ

- · NDM (Carbapenem resistance)
- OXA-48-like (Carbapenem resistance)
- VIM (Carbapenem resistance)

Viruses

- Adenovirus
- Coronavirus
- · Human Rhinovirus/Enterovirus
- Human Metapneumovirus
- Influenza A
- · Influenza B
- · Parainfluenza Virus
- Respiratory Syncytial Virus
- · Coronavirus MERS

Fungi

- · Aspergillus spp.
- · Cryptococcus spp.

· Pneumocystis jirovecii

Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia

Naomi J. Gadsby,¹ Clark D. Russell,¹² Martin P. McHugh,¹ Harriet Mark,¹ Andrew Conway Morris,³ Ian F. Laurenson,¹ Adam T. Hill,⁴ and Kate E. Templeton¹

Clinical Infectious Diseases[®] 2016;62(7):817–23

Etude Britannique, 2012-2014

323 patients hospitalisés pour une pneumonie, 55% hommes, âge médian 67 ans

Admission en réanimation: 18,6%

Mortalité J30: 6,2%

PCR multiplex élargie « maison »

26 pathogènes, dont 13 bactéries (Fast multiplex real-time PCR):

S.pneumoniae; H.influenzae; M.catarrhalis; S.aureus; E.coli; K.pneumoniae; P.aeruginosa; A.baumannii; M.pneumoniae; C.pneumoniae; C.psittaci; L.pneumophila; Legionella spp.

+ Quantification de la charge bactérienne pour 6 bactéries

Influenza A et B; VRS; para-influenza types 1–3; adénovirus; coronavirus 229E, HKU1, NL63, et OC43; métapneumovirus; rhinovirus

Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia

Pathogen	N (%)
Bacteria	
Any bacteria	262 (81.1)
With ≥10 ⁵ CFU/mL cutoff where quantified	231 (71.5)
Haemophilus influenzae	130 (40.2)
Streptococcus pneumoniae	115 (35.6)
Moraxella catarrhalis	44 (13.6)
Escherichia coli	37 (11.5)
Staphylococcus aureus	33 (10.2)
Klebsiella pneumoniae	13 (4.0)
Pseudomonas aeruginosa	9 (2.8)
Mycoplasma pneumoniae	6 (1.9)
Acinetobacter baumannii	3 (0.9)
Legionella pneumophila	3 (0.9)
Non-pneumophila Legionella spp.	3 (0.9)
Chlamydophila psittaci	2 (0.6)
Chlamydophila pneumoniae	0 (0)

Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia

Pathogen	N (%)
Virus	
Any virus	98 (30.3)
Rhinovirus	41 (12.7)
Influenza	23 (7.1)
A	16 (5.0)
В	7 (2.2)
Parainfluenza virus	11 (3.4)
PIV-1	3 (0.9)
PIV-2	6 (1.9)
PIV-3	2 (0.6)
Coronavirus	9 (2.8)
HCoV-OC43	6 (1.9)
HCoV-NL63	2 (0.6)
HCoV-229E	1 (0.3)
HCoV-HKU1	0 (0)
Adenovirus	7 (2.2)
Respiratory syncytial virus	4 (1.2)
Human metapneumovirus	3 (0.9)

Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia

Potential Modification	Antibiotic Agent	N (%)
De-escalation		247 (77.2)
Remove 1 agent		113
	CLR	108
	AMC	2
	Other ^a	3
Remove 2 agents		12
	CLR + AMX	6
	CLR + DOX	6
Reduce spectrum of agent		12
	AMC to DOX	8
	AMC to AMX	2
	Other ^b	2
Reduce number and spectrum		110
	AMC + CLR to DOX	61
	AMC + CLR to AMX	22
	AMX + CLR to AMC	12
	AMX + CLR to DOX	5
	CRO + CLR to DOX	4
	AMC + CLR to LEV	2
Other ^c		4

Potential Modification	Antibiotic Agent	N (%)
Escalation		19 (5.9)
Add 1 agent		2
	CIP	1
	DOX	1
Increase spectrum of agent		15
	CLR to DOX	6
	CLR to CIP	3
	DOX to AMC	3
	Other ^d	3
Increase number and spectrum		2
	AMX to DOX + CLR	1
	CLR to AMX + CIP	1

Potential Modification	Antibiotic Agent	N (%)
No change		54 (16.9)

Synthèse

La recherche de virus respiratoires par mPCR dans différentes situations cliniques (infection virale suspectée, pneumonie communautaire, voire pneumonie nosocomiale) pourrait être bénéfique pour :

- 1. Améliorer le diagnostic étiologique
- 2. Identifier les patients les plus à risque (diagnostic de gravité)
- 3. Faciliter la gestion du risque viral (isolement, traitement antiviral)
- 4. Epargner les antibiotiques
- 5. Assurer une veille épidémiologique
- L'impact pronostique d'une stratégie diagnostique étiologique reste à démontrer...