Les autres addictions

David Planchard (MD, PhD)

Department of Cancer Medicine Thoracic Unit Gustave Roussy – Villejuif (France)

Great advances have been made in lung cancer therapy

Out of EGFR and ALK there are many other potential driver mutations in lung adenocarcinoma

IFCT, French Cooperative Thoracic Intergroup.

Barlesi F, et al. Lancet. 2016;387:1415-26. Cancer Genome Atlas Research Network. Nature. 2014;511:543-50.

ROS1 rearrangements in NSCLC

- Present in ca. 1% of NSCLC cases (also found in some GBMs and cholangiocarcinomas)
- Enriched in younger, never or light smokers with adenocarcinoma histology
- No overlap with other oncogenic drivers

Bergethon K, et al. J Clin Oncol. 2012;30:863-70. Takeuchi K, et al. Nat Med. 2012;18:378-81.

GBM, glioblastoma.

Crizotinib: Inhibitor of c-MET, ALK and ROS1

Kinase	IC ₅₀ (nM) mean*	Selectivity ratio
c-MET	8	-
ALK	40-60	5-8X
ROS1	60	7X
RON	80	10X
A	294	34X
AXI	322	37X
Tie-2	448	52X
Trk A	580	67X
Trk B	399	46X
Abl	1,159	166X
IRK	2,887	334X
Lck	2,741	283X
Sky	>10,000	>1,000X
VEGFR2	>10,000	>1,000X
PDGFR β	>10,000	>1,000X

Camidge et al, ASCO 2014

Cui et al. J Med Chem 54: 6342-63, 2011 and Pfizer data on file

Significant Responses to Crizotinib in Patients with ROS1-Positive NSCLC

Baseline

After 3 months of crizotinib

Bergethon et al., JCO 30(8): 863-70, 2012

Rapid Responses to Crizotinib in Patients with ROS1-Positive NSCLC

Baseline

After 4 weeks of crizotinib

Image courtesy of Ignatius Ou

<u>Crizotinib</u> and **ROS1+** patients

NR, not reached.

Shaw AT, et al. N Engl J Med. 2014;371:1963-71.

AcSé Crizotinib : objectives

To identify patients with an advanced malignancy presenting a crizotinib-target alteration and to generate epidemiological data

Single biomarker tests in the 15 malignancies

ROS1 or ALK translocation/amplification

- IHC signal (≥1+) → FISH (100 nuclei)
- translocation threshold > 15 % positive cells
- amplificiation threshold > 6 copies

ALK and MET Mutation

- ALK : exons 23 to 25.
- MET: exon 14 and exons 16 to 19

MET amplification

- IHC signal (≥2+) → FISH (100 nuclei)
- Amplification threshold: > 6 copies
- GBM two cohorts high polysomy and true amplification (MET/CEP7 ratio)

Gilles Vassal et al, ESMO-ECCO 2015

Comparison of <u>crizotinib</u> efficacy across studies *on ROS1+* NSCLC

	Profile 1001 ¹ (N = 50)	EUROS1 ² (N = 31)	AcSé ³ (N = 36)
Trial	Phase 1 expansion	Retrospective	Phase 2
Ethnicity	Global (42% Asian)	Europe	France
Diagnostic	Local FISH	Local FISH	FISH
Response rate	72%	80%	72%
Median PFS, months	19.2	9.1	44% at 12 months

The FDA and EMA approved crizotinib for the treatment of *ROS1*+ NSCLC (March and August 2016, respectively)

1. Shaw AT, et al. N Engl J Med. 2014;371:1963-71. 2. Mazières J, et al. J Clin Oncol. 2015;33:992-9. 3. Vassal G, et al. ECCO 2015; abstract 12LBA.

Ceritinib in ROS1-rearranged (Korean Nationwide P hase II Study)

Best response*, n (%)	All (N= 32)	Crizotinib-naïve (N= 30)	
CR	1 (3)	1 (3)	
PR	19 (59)	19 (59)	
SD	6 (19)	6 (19)	
PD	2 (6)	2 (6)	
Not evaluable**	4 (6)	2 (7)	
Overall response rate , n (%)	20 (62%)	20 (67%)	
Disease control rate (CR+PR+SD), n (%)	26 (81)	26 (87)	
Duration of response, months Median (95% CI)	18.4 (8.0-18.4)		

Sun Min Lim et al, JCO 2017 B.C.Cho et al, IASLC 2016

Progression-free Survival

Sun Min Lim et al, JCO 2017

Intracranial Response to Ceritinib

Best response, n (%)	Patients with brain metastases at baseline (N=8)
CR	1 (13)
PR	1 (13)
SD*/Non-CR/Non-PD [#]	3 (37)
PD	0
Not evaluable	3 (37)
Overall intracranial response rate, n(%)	2 (25)
Intracranial disease control rate	5 (63)
(CR + PR + SD*/Non-CR/Non-PD [#]), n (%)	

*SD for measurable brain metastases; #Non-CR/Non-PD for non-measurable brain metastases

Complete response Partial response (-66%)

Baseline

5 months

3 months B.C.Cho et al, IASLC 2016

Safety and Antitumor Activity of the Multi-Targeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib (RXDX-101): Combined Results from Two Phase 1 Trials (ALKA-372-001 and STARTRK-1)

Alexander Drilon et al, cancer discovery 2017

Alexander Drilon et al, cancer discovery 2017

The NEW ENGLAND

Acquired Resistance to Crizotinib from a Mutation in CD74–ROS1 JOURNAL of MEDICINE

N Engl J Med. 2013

Lorlatinib Is Active Against Mutations that Confer Resistance to Existing ALK and ROS1 TKIs*

		Cellular ALK Phosphorylation Mean IC ₅₀ (nM)		Target/	Cellular ROS1	Phosphorylatio	n Mean IC ₅₀ (nM)‡		
Mutation Status	Cell Line	PF-06463922	Crizotinib	Ceritinib (LDK-378)	Alectinib (CH-5424802)	Cell Line (engineered)	PF-06463922	Crizotinib	Ceritinib (LDK-378)
EML4-ALK v1	NIH3T3 BaF3	1.3 3.6	80 90	NA 41	62 24	CD74-ROS1(s) NIH3T3	0.23 0.11	11 3.9	51*
EML4-ALK L1196M	NIH3T3 BaF3	21 43	843 1154	NA 70	250 113	BaF3 CD74-ROS1(s)			
EML4-ALK G1269A	NIH3T3 BaF3	15 80	605 689	NA 134	NA 112	NA G2032R 112 BaF3	186	2033	2666
EML4-ALK G1202R	NIH3T3 BaF3	77 113	1003 562	>1000 549	>10,000 362				
EML4-ALK I1151Tins	NIH3T3 BaF3	38 50	1268 902	1066 296	1770 126				
EML4-ALK S1206Y	NIH3T3 BaF3	4.2 3.2	626 152	NA 60	NA 29				
EML4-ALK C1156Y	NIH3T3 BaF3	1.6 15	478 406	NA 177	NA 21	IC ₅₀ < 100 nM IC ≥ 100 < 200 nM			
EML4-ALK F1174L	NIH3T3 BaF3	0.2 4.0	165 150	NA 161	NA 26		IC ₅₀ ≥ 200 nl	vi	

*Based on results in BaF3 cell line

[‡]Alectinib does not inhibit ROS1

ALK, anaplastic lymphoma kinase; IC₅₀, half-maximal inhibitory concentration; NA, not available; ROS1, c-ros oncogene 1; TKI, tyrosine kinase inhibitor

Zou HY, et al. AACR-NCI 2013, poster A277 B. Solomon et al, ASCO 2016

Lorlatinib (PF-06463922) phase I: Majority of ROS1 Patients Had a Decrease in Target Lesion Size*

All patients who received 1 prior TKI received crizotinib

*Number of prior TKIs counted by line

B. Solomon et al, ASCO 2016

CNS Responses in ALK/ROS1+ Patients with Measurable Disease

ALK, anaplastic lymphoma kinase; PD, progressive disease; ROS1, c-ros oncogene 1; TKI, tyrosine kinase inhibitor

B. Solomon et al, ASCO 2016

Preliminary Efficacy and Safety of Lorlatinib in Patients With ROS1+ NSCLC

PRELIMINARY EFFICACY AND SAFETY OF LORLATINIB IN PATIENTS with ROS1-POSITIVE NON-SMALL CELL LUNG CANCER

• 47 patients with ROS1+ NSCLCtreated;

MADRID 2017

- 25 (53%) had CNS involvement at baseline
- and 72% of patients had received prior crizotinib
- The overall response rate (ORR) and intracranial (IC) ORR was
 - 17/47 (**36.2%;** 95% CI: 22.7, 51.5)
 - and 14/25 (56.0%; 95% CI: 34.9, 75.6)
- As of the date of data cutoff, 12/17 (71%) patients with confirmed responses had a response durations ≥6 months.

Best Change in Tumor Size From Baseline by Prior TKI Therapy in (A) Overall and (B) Intracranial Tumors

Prior Crizotinib Status: No Prior Crizotinib Prior Crizotinib +/- CT Prior Crizotinib and Prior Ceritinib

Adverse Events

- The majority of TRAEs were Grade 1 and Grade 2 in severity; there were no Grade 4-5 TRAEs.
- TRAEs leading to dose interruptions and dose reductions occurred in 15 (32%) and 11 (23%) patients, respectively.
- There were no treatment-related discontinuations or deaths.

Treatment-Related Adverse Events Occurring in ≥10% of Patients With ROS1-positive NSCLC (N=47)

Adverse Event	Grade 1	Grade 2	Grade 3	Total
	n (%)	n (%)	n (%)	n (%)
Hypercholesterolemia ^a	12 (26)	23 (49)	4 (9)	39 (83)
Hypertriglyceridemia ^a	8 (17)	9 (19)	9 (19)	26 (55)
Edema ^a	16 (34)	4 (9)	1 (2)	21 (45)
Peripheral neuropathy ^a	9 (19)	3 (6)	1 (2)	13 (28)
Weight increased	4 (9)	3 (6)	2 (4)	9 (19)
Cognitive effects ^a	5 (11)	3 (6)	0	8 (17)
Dizziness	5 (11)	0	2 (4)	7 (15)
Mood effects ^a	5 (11)	1 (2)	0	6 (13)
Lipase increased	3 (6)	0	3 (6)	6 (13)
ALT increased	5 (11)	0	0	5 (11)
Arthralgia	3 (6)	2 (4)	0	5 (11)

^aRefers to AE cluster terms

ROS1 - Acquired Resistance to Crizotinib

ROS1 D2033N mutation: resistance to crizotinib can be overcome by cabozantinib

Progression on crizotinib

Cabozantinib response at 4 weeks

cMET/RET/vascular endothelial growth factor (VEGFR) inhibitor cabozantinib

Drilon et al, CCR 2016

Cabozantinib (XL184) overcomes crizotinib resistance caused by the mutations in CD74–ROS1 (G2032R)

cMET/RET/vascular endothelial growth factor (VEGFR) inhibitor cabozantinib

Ryohei Katayama et al, CCR 2015

Mutations in the ROS1 kinase domain conferring crizotinib resistance

Mutation	Location	ROS1 fusion	Active next generation inhibitor
G2032R ¹	solvent front	CD74-ROS1	 cabozantinib, lorlatinib, foretinib, brigatinib (in vitro)⁴ cabozantinib, lorlatinib (patient)
D2033N ²	solvent front	CD74-ROS1	cabozantinib (in vitro, patient) ²
L2155S (cell line)3	n.r.	SLC34A2-ROS1	n.r.
L2026M⁴	gate-keeper	CD74-ROS1	cabozantinib, brigatinib, certinib, foretinib, Iorlatinib ⁴
S1986Y/F⁵	double mutation	EZR-ROS1	lorlatinib (patient) ⁵
L1951 ⁶	solvent front		cabozantinib (in vitro, patderived cells) ⁶

¹Awad et al, NEJM 2013; ²Drilon et al, 2015; ³Song et al, 2015; ⁴Chong et al, CCR 2016; ⁵Facinetti et al., CCR 2016 ⁶Katayama et al, CCR 2015

So ROS1 and NSCLC...

- ROS1 rearrangement is a therapeutically tractable oncogenic driver that occurs in 1% to 2% of patients
- Given the high homology in the kinase domains of ROS1 and ALK, ALK inhibitors have been shown to be efficacious in ROS1-positive cell lines and tumors

Crizotinib EMA and FDA approved

• Acquired ROS1 mutations after crizotinib treatment could be overcome by next generation inhibitors like cabozantinib and lorlatinib

Frequency of genetic alterations

from 18 679 analysed samples

F.Barlesi et al, lancet 2016

GUSTAVE

ROUS

BRAF and its signal transduction pathway

Preliminary evidence suggests that BRAF V600E mutation may be associated with poor prognosis

Sources: 1. Antonio Marchetti et al. JCO 2011;29:3574-3579; 2. Stephanie Cardarella et al. Clin Cancer Res 2013;19:4532-4540

Outcomes stratified by line of therapy and molecular alteration: second line

Second-line

	Overall population	EGFR mutation	KRAS mutation	BRAF mutation
Overall response (available data)	3,325	441	762	59
Overall response, %	13	31	8	9
95% CI	11.6–13.8	26.5-35.1	5.8–9.6	1.4–15.6
PFS (available data)	4,029	518	1,017	71
PFS, median, months	3.1	5.6	2.5	3.1
95% CI	3.0-3.3	4.3-6.6	2.3-2.9	1.4-6.1
6-month PFS, %	36	48	33	41
95% CI	34.7-38.0	43.5–53.1	29.5-36.0	28.7-53.9
12-month PFS, %	24	33	25	18
95% CI	22.1–25.5	27.4-37.8	21.3-27.9	6.2-30.1
Overall survival (available data)	7,821	1,017	1,966	132
OS, median, months	13.8	NR	11.7	13.8
95% CI	13.3–14.4	NR	10.6–13.1	8.5–21.9

Barlesi F, et al. Lancet. 2016;387:1415-26.

Targeted therapy for patients with *BRAF*-mutant lung cancer results from the European EURAF cohort

Sample size	35	1.00 - 2
BRAF inhibitor therapy	35 (100%)	
BRAF inhibitors and lines (total)	39	mPFS: 5.0 months
Vemurafenib	29	e 0.75
Dabrafenib	9	
Sorafenib	1	
Sequential BRAF inhibitors		
No	31 (89%)	
Yes	4 (11%): 3x vemurafenib → dabrafenib and 1x sorafenib → vemurafenib	
BRAF inhibitor used in		۲ <u>۲</u>
1st line	5 (14%)	0.00
Further lines	30 (86%)	0 20 40 60 80 100 120 140 160 180 Weeks
-All tumors with non-V600E	mutations located outside of the activ	tion segment of the BRAF kinase domain were <u>refractory to BRAF</u>

-All tumors with non-V600E mutations located outside of the activation segment of the BRAF kinase domain were <u>refractory to BRAF</u> therapy (17%: G466V, G469A, G469L,G596V, V600K, K601E).
 -One patient with G596V achieved PR with vemurafenib

Oliver Gautschi et al, JTO 2014

Vemurafenib in BRAF V600 nonmelanoma cancers (BASKET trial): Preliminary best response

Basket trial (multiple non-melanoma cancers)

^aPatients with several pre-specified cancers were enrolled into the study, including NSCLC and colorectal cancer. CI, confidence interval; CR, complete response; mPFS, median PFS; OR, overall response; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

Hyman DM, et al. N Engl J Med. 2015.

BRAF V600E and Vemurafenib

B.Besse, Gustave Roussy
BRF113928 study design Multicohort, nonrandomized, open-label phase 2 study

BID, twice daily; D, dabrafenib; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, overall response rate; QD, once daily; T, trametinib. ^a Includes n = 6 patients who were treatment naive. ^b Includes 2 patients with no prior treatment originally enrolled in cohort B due to protocol deviation. 1. Planchard D, et al. *Lancet Oncol.* 2016;17:642-650; 2. Planchard D, et al. *Lancet Oncol.* 2016;17:984-993; 3. ClinicalTrials.gov. https:// clinicaltrials.gov/ct2/show/NCT01336634. Accessed May 9, 2017.

GUSTAVE/ ROUSSY-

Treatment of *BRAF* V600E-mutant NSCLC with dabrafenib ± trametinib in phase 2 trials

Patients with advanced NSCLC who received dabrafenib as secondline or later treatment $(n = 78)^1$

Age (range), years 66 (28-85) Sex, n (%) Male 39 (50) Female 39 (50) Ethnic origin, n (%) White 59 (76) Asian 17 (22) African American 2 (3) ECOG performance status, n (%) 0 16 (21) 1 50 (64) 12 (15) 2 Smoking history, n (%) Never smoked 29 (37) \leq 30 pack-years 25 (32) 24 (31) > 30 pack-years Histology at diagnosis, n (%) 75 (96) Adenocarcinoma Other 3 (4)

Patients with metastatic NSCLC who received dabrafenib plus trametinib as second-line or later treatment (n = 57) ²			
Age (range), years	64 (58–71)		
Sex, n (%)			
Male	29 (51)		
Female	28 (49)		
Ethnic origin, n (%)			
White	49 (86)		
Black	2 (4)		
Asian	4 (7)		
Mixed	1 (2)		
Missing	1 (2)		
ECOG performance status, n (%)			
0	17 (30)		
1	35 (61)		
2	5 (9)		
Histology at initial diagnosis, n (%)			
Adenocarcinoma	56 (98)		
Large cell	1 (2)		
History of tobacco use, n (%)			
Never smoked	16 (28)		
Current smoker	6 (11)		
Former smoker	35 (61)		

1. Planchard D, et al. Lancet Oncol. 2016 2. Planchard D, et al. Lancet Oncol. 2016

Dabrafenib monotherapy (cohorte A): Maximum reduction

Planchard D, et al. Lancet Oncol. 2016;17:642-50.

GUSTAVE/

Progression-Free Survival (independent review)

D.Planchard et al, lancet onco 2016

Dabrafenib Activity in BRAF V600E NSCLC

- 72 year old white female, 2nd line, former smoker, 10 pack years (stop in1985)
- ECOG PS2
- Adenocarcinoma, BRAFV600E, T3N3M1b (pleural, pulmonary, lymph nodes)
- Progression after one line of platinum-pemetrexed

October 2012

+ 6 weeks of Dabrafenib

Baseline CT-Scan J. Mazieres et al, Hôpital Larrey CHU Toulouse ECOG PS0 D.Planchard et al, ESMO 2014

- ECOG PS:0
- Asymptomatic
- Very good safety profile (rare episodes of fever)

- Unique residual disease in the lower left lung
- Discussion for a local treatment 2 years after the start of dabrafenib

J. Mazieres et al, Hôpital Larrev CHU Toulouse

D.Planchard et al, ESMO 2014

Acquired resistance to BRAF inhibition: many hypotheses

Johannessen CM, et al. Nature. 2010;468:968-72. Nazarian R, et al. Nature. 2010;468:973-7. Poulikakos PI, et al. Nature. 2011;480:387-90. Shi H, et al. Nature Commun. 2012;3:724. Straussman R,et al. AACR. 2012;abstract 4837. Villanueva J, et al. Cancer Cell. 2010;18:683-95. Wagle N, et al. J Clin Oncol. 2011;29:3085-96.

GUSTAVE

ROUSS)

Cohorte B: Dabrafenib + trametinib: Best-confirmed response

	Investigator assessment (n = 57)	Independent assessment (n = 57)
Best response, n (%)		
CR	2 (4)	0
PR	34 (60)	36 (63)
SD ^a	9 (16)	4 (7)
PD	7 (12)	8 (14)
Non-CR/non-PD ^b	0	3 (5)
Not evaluable	5 (9)	6 (11)
ORR (CR + PR), n (%) [95% Cl]	36 (63) [49–76]	36 (63) [49–76]
Disease control rate (CR + PR + SD), n (%) [95% CI]	45 (79) [66–89]	43 (75) [62–86]

^a SD is defined as meeting SD criteria for \geq 12 weeks.

^b Patients were nonmeasurable by independent review committee.

Planchard D, et al. Lancet Oncol. 2016;17:984-93.

Dabrafenib + trametinib: Maximum change in target lesion

NE patients either had no post-baseline CT scan or

discontinued before 12 weeks without documented progression

NE, not evaluable.

Planchard D, et al. Lancet Oncol. 2016;17:984-93.

Dabrafenib + trametinib vs dabrafenib:AEsDabrafenib + TrametinibDabrafenib + Trametinib

			i anotino		
Category	AEs, n (%)	All Grades	Grade 3	All Grades	Grade 3
	Pyrexia	26 (46)	1 (2)	30 (36)	2 (2)
	Asthenia	18 (32)	2 (4)	25 (30)	3 (4)
	Decreased appetite	17 (30)	0	24 (29)	1 (1)
General	Chills	13 (23)	1 (2)	13 (15)	1 (1)
	Peripheral oedema	13 (23)	0	-	-
	Arthralgia	11 (19)	0	14 (17)	1 (1)
	Dry skin	15 (26)	1 (2)	19 (23)	0
	Rash	12 (21)	1 (2)	17 (20)	1 (1)
China.	Hyperkeratosis	6 (10)	1 (2)	25 (30)	1 (1)
SKIN	Basal-cell carcinoma	2 (2)	1 (2)	4 (5)	4 (5)
	Squamous-cell carcinoma	2 (4)	2 (4)	10 (12)	10 (12)
	Skin papilloma	-	-	22 (26)	0
	Nausea	23 (40)	0	23 (27)	1 (1)
Digestive	Vomiting	20 (35)	0	17 (20)	1 (1)
	Diarrhoea	19 (33)	1 (2)	14 (17)	1 (1)

Planchard D, et al. Lancet Oncol. 2016;17:984-93. Planchard D, et al. Lancet Oncol. 2016;17:642-50.

The patient received the association: Dabrafenib (150mg/d) + Trametinib (2mg twice a day)

61-year-old woman, never smoked

Adenocarcinoma with pleural effusion, liver metastases, 4th line (CDDP-pemetrexed, docetaxel, gemcitabine)

July 2014

Horizontal Antiparticipants

March 2017

D.Planchard et al, Gustave Roussy

BRF113928: STUDY DESIGN

BID, twice daily; D, dabrafenib; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, overall response rate; QD, once daily; T, trametinib. ^a Includes 6 patients who were treatment naive. ^b Includes 2 patients with no prior treatment originally enrolled in cohort B due to protocol deviation. 1. Planchard D, et al. *Lancet Oncol.* 2016;17:642-650; 2. Planchard D, et al. *Lancet Oncol.* 2016;17:984-993; 3. ClinicalTrials.gov. https:// clinicaltrials.gov/ct2/show/NCT01336634. Accessed May 9, 2017.

BEST CONFIRMED RESPONSE

	Investigator Assessed (n = 36)	IRC Assessed (n = 36)
Best response, n (%)		
CR	2 (6)	2 (6)
PR	21 (58)	21 (58)
SD	4 (11)	3 (8)
PD	5 (14)	7 (19)
NE	4 (11)	3 (8)
Overall response rate (CR + PR), n (%) [95% CI]	23 (64) [46-79]	23 (64) [46-79]
Disease control rate (CR + PR + SD), n (%) [95% Cl]	27 (75) [58-88]	26 (72) [55-86]

CR, complete response; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease.

INVESTIGATOR-ASSESSED MAXIMUM CHANGE IN TARGET LESION BY BEST RESPONSE

Grey line at -30 represents the threshold for partial response per RECIST v1.1 criteria.

PROGRESSION-FREE SURVIVAL

Numerical differences in median PFS between investigator and IRC assessments were primarily driven by censored observations for IRC (5 patients who were assessed by the investigators as having PD had values for PFS close to the medians). Because no further tumour assessment scans were collected for these patients, and because the IRC did not assess these last scans as PD, these patients were censored.

CONCLUSIONS (CONT)

• The ORR, DOR, and PFS observed in treatment naive patients were similar to those reported for the previously-treated cohort receiving combination treatment

	Previous	Treatment Naive	
	Dabrafenib Monotherapy ^{1,2} (n = 78)	Dabrafenib Plus Trametinib² (n = 57)	Dabrafenib Plus Trametinib (n = 36)
ORR (95% CI), %	33 (23–45)	67 (53–79)	64 (46–79)
DOR, median (95% CI), months	9.6 (5.4–15.2)	9.8 (6.9–16.0)	10.4 (8.3–17.9)
PFS, median (95% CI), months	5.5 (3.4–7.3)	10.2 (6.9–16.7)	10.9 (7.0–16.6)
OS, median (95% CI), months	12.7 (7.3–16.3)	18.2 (14.3–NE)	24.6 (12.3–NE)

 Based on these results, dabrafenib plus trametinib was recently approved by the European Commission and US FDA for use in patients with metastatic NSCLC harboring this mutation regardless of prior treatment history

1. Planchard D, et al. Lancet Oncol. 2016; 17:642-650; 2. Planchard D, et al. J Clin Oncol. 2017; 35 (suppl) [abstract 9075].

So BRAF and NSCLC...

- BRAF should testing in pts EGFR and ALK wild type
- Dabrafenib + Trametinib (for Tafinlar[®] and Mekinist[®]) demonstrated clinically

meaningful anti-tumor activity with higher ORR when compared indirectly with

dabrafenib or Vemurafenib in BRAF V600E NSCLC

EMA and FDA approved

-Next step: immunotherapy is tempting, and clinical trials testing these combinations are ongoing in melanoma

-Strong need to better characterize resistance mechanisms in NSCLC

MET activation: amplification and/or exon 14 mutation/skipping

- Implicated in tumour cell migration, invasion, proliferation, and angiogenesis
- Mechanisms of MET activation
 - Amplification, point mutations, deletions
- MET amplification
 - poor prognosis in NSCLC
 - resistance to EGFR TKI
 - 1–4% of lung NSCLC
- MET exon 14 mutation
 - 3-4% of nonsquamous NSCLCs
 - 20–30% of sarcomatoid lung carcinomas

Ou SH, et al. J Thorac Oncol. 2011;6:942-6. Cancer Genome Atlas Research Network. Nature. 2014;511:543-50.

Tumour shrinkage seen with crizotinib treatment in intermediate and high *MET* cohorts

Best percent change from baseline in target tumour lesions by patient MET/CEP7 ratio ≥ 5

J Clin Oncol. 2014;32:5s (suppl; abstract 8001).

^aMET/CEP7 ratio: >5 Duration of response: 31+ months Images: G. Shapiro DFCI

The French national AcSé Program Results: METAMP NSCLC

Tumor shrinkage at best response

MET amplification

- IHC signal (≥ 2+) → FISH (100 nuclei)
- Amplification threshold: > 6 copies
- GBM two cohorts high polysomy and true amplification (MET/CEP7 ratio)

Best response

ORR = 7/25 28 % [12% ; 49%]

DCR = 15/25 60 % [41%;79%]

No correlation observed between the number of MET copies and best response (p=0,10).

G.Vassal et al 2015

Tumour shrinkage observed with <u>capmatinib</u> treatment in intermediate and high *MET* cohorts

Best response n (%)	GCN < 4 (n = 17)	GCN ≥ 4 and < 6 (n = 12)	GCN ≥ 6 (n = 15)	
CR	0	0	0	
PR	0	2 (17)	7 (47)	
SD	8 (47)	3 (25)	5 (33)	
PD	5 (29)	3 (25)	2 (13)	
Unknown	4 (24)	4 (33)	1 (7)	
ORR 95% CI	0	2 (17) 2.1–48.4	7 (47) 21.3–73.4	
DCR	8 (47)	5 (42)	12 (80)	
95% CI	23.0–72.2	15.2–72.3	51.9–95.7	
	CMET GCN < 4 n/N (%) = 11/17 (64.7%) 80 40 20 20 40 20 -20 -20 -40 -60 -80 -100 0	$\begin{array}{c} \text{CMET GCN } \geq 4 \text{ and } < 6 \\ \text{n/N (\%) = 7/12 (58.3\%)} \\ \begin{array}{c} 80 \\ 40 \\ 40 \\ 20 \\ -20 \\ -20 \\ -20 \\ -40 \\ -60 \\ -80 \\ -100 \end{array}$	$\begin{array}{c} \text{CMET GCN} \geq 6\\ n/N (\%) = 12/15 (80.0\%)\\ \begin{array}{c} 80\\ -0\\ -0\\ -20\\ -0\\ -20\\ -3+\\ -40\\ -40\\ -3+\\ -40\\ -3+\\ -40\\ -3+\\ -40\\ -3+\\ -40\\ -3+\\ -40\\ -3+\\ -40\\ -3+\\ -3+\\ -40\\ -3+\\ -3+\\ -3+\\ -3+\\ -3+\\ -3+\\ -3+\\ -3+$	

GCN, gene copy number.

Schuler M, et al. ASCO 2016. J Clin Oncol. 2016;34 Suppl:abstract 9067.

Prevalence of *MET* **Exon 14 Mutations in NSCLC**

Awad MM, et al, J Clin Oncol. 2016 Jan 4.

MET exon 14-mutant NSCLC (3-4% nonsquamous)

Cabozantinib		
	Baseline	1 month follow-up cabozantinib
Crizotinib		
	Baseline	1 month follow-up crizotinib
Crizotinib	Baseline	G week follow-up crizotinib

Antitumour activity of crizotinib (PROFILE 1001 study)

Response-evaluable population (n = 18)			
Best OR, n (%)			
CR	0		
PR	8 (44%)		
SD	9 (50%)		
Unconfirmed CR/PR ^a	5 (28%)		
PD	0		
Indeterminate ^b	1 (6%)		
ORR	8 (44%) 95% CI 22–69		

a Of the 5 patients, 2 await confirmation, 3 cannot be confirmed. b This patient discontinued therapy in cycle 1; response imaging could not be performed but response-evaluable per protocol.

Drilon AE, et al. ASCO 2016. J Clin Oncol. 2016;34 Suppl:abstract 108. Frampton GM, et al. Cancer Discov. 2015;5:850-9. Paik PK, et al. Cancer Discov. 2015;5:842-9. Waqar SN, et al. J Thorac Oncol. 2015;10:e29-31.

Antitumor Activity (PROFILE 1001 study)

A.Drilon et al, ASCO 2016

Impact of MET inhibitors on survival among pts with MET exon 14 mutant

Presented By Mark Awad at 2017 ASCO Annual Meeting

Overall survival date of stage IV (MET exon 14 mutant)

Presented By Mark Awad at 2017 ASCO Annual Meeting

Outcomes on crizotinib (MET exon 14 mutant)

Presented By Mark Awad at 2017 ASCO Annual Meeting

PD-L1 expression and response to immunotherapy in pts with MET exon 14 mutant (retrospective review)

Presented By Joshua Sabari at 2017 ASCO Annual Meeting

PD-L1 and response to IO (Cell signaling, clone E1L3N)

Presented By Joshua Sabari at 2017 ASCO Annual Meeting

Tumor mutational burden (TMB)

Presented By Joshua Sabari at 2017 ASCO Annual Meeting

Duration on IO

Presented By Joshua Sabari at 2017 ASCO Annual Meeting

MET inhibition

MET inhibitors	Pts nb	ORR (%)	Survival (months)
Crizotinib			
PROFILE 1001 amp Camidge ASCO 2014	12	33 (67% high Met)	-
PROFILE 1001 ex14 Drillon WCLC 2016, ASCO 2016	28	44	PFS=8
AcSé MET amp Moro-Sibilot WCLC 2015, Vassal ESMO 2015	25	28	PFS=3 ; SG=7
METROS amp/ex14 Landi WCLC 2016	10	20	-
Other MET/HGF inhibitors			
Onartuzumab Spigel JCO 2017	250	10	PFS=3 ; SG=9
Capmatinib Wu ASCO 2014	43	19	-
Capmatinib Schuler ASCO 2016	16	47 (GCN ≥ 6)	
Tivantinib+Erlotinib Scagliotti JCO 2015	211 MET+	10v7	PFS=4v2 ; SG=9v6
Cabozantinib+Erlotinib Neal Lancet Oncol 2016	72	14	PFS=5
Emibetuzumab+Erlotinib Rosen Clin Cancer Res 2016	23 (tumeurs solides)	(3 patients)	Adaoted fr

RET rearrangements

- 1–2% of unselected NSCLCs
- Clinical features: young, never or former light cigarette smokers

Intact tyrosine kinase domain fused to an upstream gene partner

- most common: KIF5B
- others: CCDC6, NCOA4, TRIM33, KIAA1468
- Result in ligand-independent dimerization
 and downstream growth pathway activation
- Oncogenic in vitro and in vivo
- diagnosis
 - FISH, DNA-based NGS, RNAseq (IHC not helpful)

Drilon A, et al. Cancer Discov. 2013;3:630-5. Kohno T, et al. Nat Med. 2012;18:375-7. Lipson D, et al. Nat Med. 2012;18:382-4. Saito M, et al. Carcinogenesis. 2014;35:2452-6. Suehara Y, et al. Clin Cancer Res. 2012;18:6599-608. Takeuchi K, et al. Nat Med. 2012;18:378-81.

Multi-kinase inhibitors targeting RET activity

Compound	Tradename	Manufacturer	IC ₅₀ (nM) In vitro kinase	IC ₅₀ (nM) Cellular kinase	IC50 (nM) In vitro kinase RET V804M	Other targets
Regorafenib	Stivarga	Bayer	1.5	~10	NR	VEGFR1-3, BRAF, c-kit, PDGF-b
Levantinib	Lenvima	Eisai	1.5	48	NR	VEGFR1-3, FGFR1-3, c-kit, PDGFR
Alectinib	Alecensa	Roche/Chugai	4.8	?	53 V804L (32)	ALK (1.9 nM)
Cabozantinib	Cometriq	Exelixis	5.2	27-85	4094	VEGFR2, MET
Ponatinib	Iclusig	ARIAD	7	0.7-11	12	Bcr-abl, FGFR1-4
Sunitinib	Sutent	Pfizer	30	40-164	55	VEGFR, PDGFR, c-kit, Flt-3
Sorafenib	Nexaavar	Bayer	47	~20-50	12	RAF, VEGFR2-3, PDGFR, c- kit, Flt-3
Vandetanib	Capresia	AstraZeneca	100	NR	> 10,000	VEGFR, EGFR
Phase 2 study to evaluate efficacy and safety of <u>vandetanib</u> in *RET*-rearranged NSCLC

ITT, intention-to-treat.

Seto T, et al. ASCO 2016. J Clin Oncol. 2016;34 Suppl:abstract 9012.

A Phase 2 Study of Cabozantinib for Patients with Advanced *RET*-Rearranged Lung Cancers

A.Drilon et al, IASLC 2016

Results: PFS and OS

Median duration of treatment 6.4 months (IQR: 2.5 to 8.3)

Overall survival for evaluable patients (n=25) PFS for evaluable patients (n=25) Kaplan-Meier curve 1.0 Kaplan-Meier curve 1.0 95% CI 95% CI Median OS 9.9 months Median PFS 5.5 months 0.8 0.8 (95% CI: 8.6 to NR) Progression-free survival probability (95% CI: 3.8 to 9.2) Survival probability 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 6 12 18 24 30 36 42 48 0 12 18 24 30 36 42 6 Months since treatment start Months since treatment start Number at risk (number censored) Number at risk (number censored) 25(0) 19(1) 1 (0) 8(3) 7(0) 7 (0) 7(0) 6(1) 2(2)25(0) 11(2) 1(0) 1(0) 3(2) 3(0) 2(0) 2(0)

Median follow up time: 9.5 months (IQR: 5.0 to 27.5), updated data cutoff October 2016

A.Drilon et al, IASLC 2016

Gautschi et al, JCO 2017

RET inhibition

Inhibiteur du RET	Nb pts	ORR (%)	PFS (month	s)
Vandetanib Platt BMC Cancer 2015	3	0%	-	
Vandetanib Yoh Lancet Respir Med 2017	19	47%	PFS=5	
Vandetanib Lee Ann Oncol 2016	18	18%	PFS=5	
Vandetanib Gautschi JCO 2017	11	18%	PFS=3	
Lenvatinib Velcheti ESMO 2016	25	16%	PFS=7	
Sunitinib Gautschi ICO 2017	9	22%	PFS=2	
Cabozantinib Drillon Lancet Oncol 2016	26	18%	PFS=6	
Cabozantinib Gautschi ICO 2017	19	37%	PFS=4	
Alectinib Lim JTO 2016	4	50%	-	
RX DX-105 Li Clin Cancer Res 2016	(1 responde	er reported from an ongoir	ng phase I trial)	Adapted fr

Novel agents more specific to target RET...

LOXO-292 is currently being evaluated in a global, multi-center Phase 1 trial in patients with advanced solid tumors

Brandhuber et al, EORTC-NCI-AACR 2016

Trk prone to fusion proteins, similar to *ALK*, that induce constitutive activation of cell signalling

- Oncogenic drivers across a variety of cancers
 - upstream partner can provide dimerization domains and ligand-independent signalling
 - activation of downstream pathways
- Detectable in the clinic
 - FISH
 - RNAseq
 - DNA-based NGS
- Select fusions are clinically actionable
 - responses to targeted therapy can be dramatic and durable

PTC, papillary thyroid cancer; CRC, colorectal cancer.

Drilon A, et al. AACR 2016:abstract CT007. Farago AF, et al. J Thorac Oncol. 2015;10:1670-4.

Entrectinib: a First-in-Class Trk Inhibitor

Target	TrkA	TrkB	TrkC	ROS1	ALK
IC50* (nM)	1.7	0.1	0.1	0.2	1.6

NGF, BDNF, NT-3, NT-4/5

ERK

MAPK pathway

Proliferation Survival Invasion Angiogenesis

PLC₇

PLC₇ pathway

- Initially discovered by Nerviano Medical Sciences (NMS) as nextgeneration ALK inhibitor
- Later discovered to have potent TrkA/B/C and ROS1 activity
- Trk and ROS1 prone to fusion proteins, similar to ALK, that induce constitutive activation of cell signaling
- Entrectinib demonstrates inhibition of its RTK targets and downstream effectors in the PLCγ, MAPK and PI3K/AKT pathways

* Biochemical kinase assay

PI3K pathway

Dimerizatio

partner

Antitumor Activity (phase I studies)

Best Response in TKI Treatment-Naïve NTRK-, ROS1-, and ALK-rearranged Tumors (n=24)

Duration of Clinical Benefit

TKI Treatment-Naïve NTRK-, ROS1-, and ALK-rearranged Tumors (n=25)

PTC: Papillar y thyroid cancer, CRC: colorectal cancer

Alexander Drilon et al, AACR 2016

Anna F. Farago et al, JTO 2015

Current Directions

STARTRK-2

An Open-Label, Multicenter, Global Phase 2 Basket Study of Entrectinib for the Treatment of Patients with Locally Advanced or Metastatic Solid Tumors that Harbor *NTRK1/2/3*, *ROS1*, or *ALK* Gene

HER2 and NSCLC

- HER2 overexpression assessed by IHC associated with poor prognosis in NSCLC (adenocarcinoma)^{1,2}
- In contrast to breast and gastric cancer, in NSCLC HER2 overexpression does not always co-occur with HER2 amplification³⁻⁵
- HER2 amplifications and HER2 mutations are generally mutually exclusive in NSCI C⁶

HER2 in NSCLC	Frequency
Overexpression (IHC 2+ and 3+) ^{1,2,7-9}	15-30%
Overexpression (IHC 3+ only) ^{2,8,9}	2–6%
Amplification (ISH) ^{1,8,10}	2–6%
Mutations ^{1,8,11-13}	1–5%

HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; NSCLC, non-small cell lung carcinoma.

1. Liu L, et al. J Thorac Oncol 2010. 2. Nakamura H, et al. Cancer 2005. 3. Bunn PA, et al. Clin Cancer Res. 2001. 4. Kem JA, et al. Am J Respir Cell Mol Biol. 1992. 5. Roche internal data on file. 6. Li BT, et al. J Thorac Oncol. 2016. 7. Bansal P, et al. Front Oncol 2016. 8. Heinmoller P, et al. Clin Cancer Res. 2001. 4. Kem JA, et al. Am J Respir Cell Mol Biol. 1992. 5. Roche internal data on file. 6. Li BT, et al. J Thorac Oncol. 2016. 7. Bansal P, et al. Front Oncol 2016. 8. Heinmoller P, et al. Clin Cancer Res. 2001. 2003. 9. Menard S, et al. Ann Oncol 2001. 10. Peters S, et al. Transl Lung Cancer Res 2014. 11. Rothschild SI. Cancers 2015. 12. Pellegrini C, et al. Clin Cancer Res 2003. 13. Buttitta F, et al. Int J Cancer 2006.

Targeting HER2 aberrations

HER2 mutations in ~1-4% and HER2 amplifications in 2-5%

Kris MG, et al. Ann Oncol. 2015; 26:1421-7. Besse B, et al. Presented at ESMO 2014. Abstract LBA 39.

Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing

Treatment Response

• Median duration of response: 7.3 months (95% CI 2.9–8.3 months)

*Indicates positive HER2 amplification; U indicates unknown HER2 amplification; All other patients' ISH status is negative

^aOne patient is not displayed due to erroneous tumor measurements recorded for cycle 7; this patient was determined to have a best response of SD (screening tumor size 64 mm, C7D1 tumor size 70 mm).

NE, not estimable/missing; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease. Treatment response as assessed by investigator.

Thomas Stinchcombe et al, ASCO 2017

Progression-Free Survival and Overall Survival

Progression-Free Survival^a

Overall Survival

^aProgression-free survival as assessed by investigator.

Thomas Stinchcombe et al, ASCO 2017

Ado-trastuzumab emtansine in pts with <u>HER2 mutant lung cancer</u> (phase II basket trial) Overall response rate (ORR)

Presented By Bob Li at 2017 ASCO Annual Meeting

Progression free survival

Median PFS: 4 months (95% CI 3.0 to NR, n=18 with 13 events) Median duration of response: 5 months (95% CI 3.0 to NR, n=8 with 6 events)

Presented By Bob Li at 2017 ASCO Annual Meeting

HER2 mutant responders had low HER2 expression and no HER2 amplification

HER2 mutation NGS	FISH	ІНС	Mass spectrometry HER2 expression (amol/ug)	Mass spectrometry HER3 expression (amol/ug)
Exon 20 A775_G776insYVMA	1.1 (2.7/2.5)	0	NA	NA
Exon 20 A775_G776insYVMA	1.4 (4.5/3.3)	1+	586 (Low)	279 (High)
Exon 20 A775_G776insYVMA	1.9 (5.6/2.9)	1+	548 (Low)	214 (High)
Exon 20 p.G778_P780dup	1.8(4.6/2.5)	2+	507 (Low)	0 (Negative)
Exon 20 G776_V777>VCV	NA	NA	NA	NA
Exon 20 p.G776delinsVC	1.6	0	NA	NA
Exon 17 p.V659E	1.1 (2.3/2.0)	2+	688 (Low)	199 (High)
Exon 8 p.S310F	4.1 (8.4/2.5)	2+	1495 (High)	0 (Negative)

Among responders tested by NantOmics mass spectrometry assay:

- HER2 proteins were not high in quantity
- HER3 overexpression possibly suggest active receptor dimerization

Presented By Bob Li at 2017 ASCO Annual Meeting

GUSTAVE/
ROUSSY-
GRAND PARIS

HER2 inhibition

Inhibiteur d'HER2	Nb pts	ORR (%)	PFS (months)
Trastuzumab + Chimiothérapie			
+ Taxane Krug cancer 2005	30/34	23/32%	SG=16/14
+ Variés (EUHER2) Mazières Ann Oncol 2016	58	51%	PFS=5 ; SG=13
TKIs			
+ Variés (EUHER2) Mazières Ann Oncol 2016	29	7%	PFS=3 ; SG=6
Afatinib De Grève Lung Cancer 2015	7	14%	_
Dacomitinib Kris Ann Oncol 2015	30	12%	SG=9
Neratinib±Temsirolimus Gandhi WCLC 2016	17/43	0/8%	PFS=3/4 ; SG=10/16
Pyrotinib Ren WCLC 2016	11	55%	PFS=6
Neratinib (SUMMIT) Hyman AACR 2017	26 (poumon)	4%	PFS=6
Afatinib (ETOP) Peters, personal communication 2017	8	Stop study at interim analysis	Adapted from O Gautsch

Do we have identified the right target ?

Amplification

Mutation

• HER2 mutation remains the most predictive factor for response to HER2-targeted therapy, including response to TDM-1

Overexpression Overlap between amplification and mutation ??

Amplification and mutation remain imperfect predictors of response to any HER2-targetd therapy

And other targetable mutations...

Gene	Alteration	Histology	Frequency (%)	Inhibitor (Phase 1 and 2)
BRAF	Mutation, fusion	ADC	1–3	Vemurafenib, dabrafenib, dabrafenib + trametinib
ROS1	Chromosomal rearrangement	ADC	1–2	Crizotinib (approved), ceritinib, cabozantinib, entrectinib, lorlatinib, DS-6051b
ΜΕΤ	Amplification, exon14 splicing	ADC	1–4 (amplifications) 2–4 (mutations)	Crizotinib, cabozantinib, tivantinib, capmatinib, volitinib, onartuzumab, glesatinib
RET	Fusion	ADC	1–2	Carbozantinib, sunitinib, sorafenib, lenvatinib, vandetanib, ponatinib, alectinib, apatinib
NTRK	Fusion	ADC	< 1	Entrectinib, LOXO-101, cabozantinib, DS-6051b, merestinib
HER2	Mutation (exon 20), amplification	ADC	1–4	Trastuzumab, neratinib + temsirolimus, afatinib, lapatinib, dacomitinib
KRAS	Mutation	ADC	15–25	Selumetinib, trametinib
PIK3CA	Mutation, amplification	SCC	15 (amplifications) 30–40 (mutations)	LY3023414, PQR309, AZD2014, GDC-0032, AZD8186, IPI-549, BYL719
FGFR1	Amplification	SCC	20	
FGFR2-3	Mutation	SCC	3	Lucitanib, nintedanib, dovitinib, AZD4547
FGFR1-3	Fusion	SCC	3.5	
DDR2	Mutation	SCC	4	Dasatinib

In summary....

Adapted from Thomas A, et al. Nat Rev Clin Oncol. 2015;12:511-26.

GUSTAVE

Acknowledgments

Jean-Charles SORIA Benjamin BESSE Thierry LE CHEVALIER

THANK YOU

david.planchard@gustaveroussy.fr

Molecular Characteristics of Responding Patients

Histology	Adenocarcinoma	Adenocarcinoma	Non-squamous	Adenocarcinoma
IHC staining	IHC 3+ (15%)	IHC 3+ (75%)	IHC 3+ (100%)	IHC 3+ (60%)
ISH (gene ratio ≥2)	Negative	Positive	Positive	Positive
Amplification by NGS copy number ≥5	Negative	Equivocal ^a	Positive	Positive
HER2 mutation	Negative	HER2 Mutation G776>VC ^a	HER2 gene rearrangement	Negative
ALK rearrangement	Negative	Negative ^a	Negative	Negative
EGFR mutation	Negative	Negative ^a	Negative	Exon 19

^aLocal FMI NGS results reported by site (no study FMI results available). Amplification by NGS positive for copy number ≥7. All other results are reported by FMI NGS as part of retrospective biomarker analyses in HER2Lung.

Thomas Stinchcombe et al, ASCO 2017