Other Oncogenic Drivers (BRAF, MET, RET, HER2, NTRK)

David Planchard (MD, PhD)

Head of the Thoracic Group Department of Cancer Medicine Gustave Roussy – Villejuif (France)

Disclosure Slide

- Honoraria: AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, Merck, MSD Oncology, Novartis, Pfizer, prIME Oncology, Roche
- **Consulting, advisory role or lectures:** AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, MSD Oncology, Novartis, Pfizer, prIME Oncology, Roche
- Travel, Accommodations, Expenses: AstraZeneca, Roche, Novartis, prIME Oncology, Pfizer

Great advances have been made in lung cancer therapy: RUSTAV targeting of oncogenic drivers

Gefitinib; Erlotinib; Afatinib; Osimertinib; Dacomitinib ALK Crizotinib; Alectinib; Ceritinib; Lorlatinib; Brigatinib

ROS1

Crizotinib; Cabozantinib; Ceritinib; Lorlatinib; Entrectinib; Ropotrectinib, DS-6051b

BRAF

Vemurafenib;Dabrafenib; Dabrafenib + Trametinib

MET

Crizotinib; Cabozantinib; Capmatinib; Savolitinib; Tepotinib; Merestinib; Glesatinib

HER2

Trastuzumab emtansine; Afatinib; Neratinib-temsirolimus; Dacomitinib; Poziotinib; XMT-1522; TAK-788; DS-8201a,

RET

Cabozantinib; Alectinib; Apatinib; Vandetanib; sunitinib; Ponatinib; Lenvatinib; BLU-667; LOXO-292

NTRK1

Entrectinib; LOXO-101 (larotrectinib); loxo-195; DS-6051b; ropotrectinib

PIK3CA

LY3023414; PQR 309

MEK1

Trametinib; Selumetinib; Cobimetinib

BRAF MUTATIONS IN NSCLC

- NSCLC with BRAF V600E mutations has histological features suggestive of an aggressive tumor³
- Patients with BRAF V600E-mutant NSCLC demonstrated less-favorable outcomes with platinum-based chemotherapy^{3,4}

1. Barlesi F et al. Lancet 2016;387:1415–1426; 2. Kris MG et al. JAMA 2014;311:1998–2006;

3. Marchetti A et al. J Clin Oncol 2011;29:3574–3579; 4. Cardarella S et al. Clin Cancer Res 2013;19:4532–4540

BRAF-ASSOCIATED PATIENT CHARACTERISTICS

	ALK ¹⁻⁴	EGFR ^{1,3,4,7}	KRAS ^{4,7}	BRAF ⁵⁻⁸
Age	Younger (~50)	Older (~60)	Older (~60)	Older (~65)
Male or female	None	Female predominant	Female predominant	None
Smoker or non-smoker	Never or light	Never or light	Heavy	Smoker and non-smoker
Histology	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma
Pattern of spread	Pericardial,* pleural metastases,* liver,* intra- or extrathoracic lymph nodes,* CNS	Liver,* CNS	CNS	?

1. Shaw AT *et al. J Clin Oncol* 2009;27:4247–4253; 2. Wang Y *et al. PLoS One* 2014;9:e116017; 3. Tsao A *et al. J Thorac Oncol* 2006;1:231–239; 4. Doebele RC *et al. Cancer* 2012;118:4502–4511;

5. Kinno T et al. Ann Oncol 2014;25:138–142; 6. Cardarella S et al. Clin Cancer Res 2013;19:4532–4540;

7. Barlesi F et al. Lancet 2016;387:1415–1426; 8. Nguyen-Ngoc T et al. J Thorac Oncol 2015;10:1396–1403

*Compared with triple-negative, wild-type patients

GUSTAVE

RUIS

Vemurafenib in BRAF mutant NSCLC

BRF113928 STUDY : DABRAFENIB IN BRAF MUTANT NSCLC IN 2ND LINE

Cohort A

D. Planchard et al – lancet Oncol 2016

MECHANISM OF ACTION FOR DUAL MAPK PATHWAY INHIBITION WITH DABRAFENIB + TRAMETINIB TO OVERCOME *ERK* ESCAPE MECHANISM

Kristina M. Ilieva et al, mol cancer therapeutics

GUSTAVE/ ROUSSY-

BRF113928 STUDY : MAXIMUM CHANGE IN TARGET LESION BY BEST CONFIRMED RESPONSE WITH DABRAFENIB + TRAMETINIB IN 2ND LINE

Cohort B

Planchard D et al. Lancet Oncol 2016;17:984–993; Planchard D et al. J Clin Oncol 2017;35(Suppl):Abst 9075

BRF113928 STUDY : MAXIMUM CHANGE IN TARGET LESION BY BEST CONFIRMED RESPONSE WITH DABRAFENIB + TRAMETINIB IN 1^{ST} LINE

Cohort C

Planchard D et al. Lancet Oncol 2017;18:1307–1316

The patient received the association: Dabrafenib (150mg twice a day) + Trametinib (2mg/day)

July 2014

February 2017

+ 31 months

D.Planchard et al, Gustave Roussy

BRAF mutated patients

Author	n	Drug	ORR	PFS (months)	OS (months)
Hyman (BASKET-trial)	20	Vemurafenib	42%	7.3	NR
Gautschi (EU-RAF, retrospective)	35	Vemurafenib	53%	5	10.8
Mazières (AcSé Vemu)	100	Vemurafenib	44.9%	5.2	9.3
Planchard (BRF cohort A)	78	Dabrafenib	33%	5.5	12.7
Planchard (BRF cohort B)	57	Dabrafenib + trametinib	66.7%	10.9	12.7
Planchard (BRF cohort C)	36	Dabrafenib + trametinib 1L	64%	10.2	24.6

EMA and FDA approvals 2017

J.Mazieres, WCLC 2018

BRAF non V600 cohort (AcSé Vemu)

- Mean Bayesian Estimated Success rate : 5.9%; credibility 95%CI : [0.2%; 20.6%]
- Prob ORR < futility bound (10%): 81.5% study stopped

J.Mazieres et al, WCLC 2018

GUSTAVE/

BRAF and immunotherapy

45% of *BRAF***-mutant & high PD-L1** expression levels (≥ 50% by 22C3 IHQ) **10%** of cases associated with **high tumor mutational burden (≥20 Mb)**

PFS / OS V600E vs. Non-V600E: 6.1 mo. vs. 2.6 mo. (p=0.67) / NR vs. 33.9 (p=0.47)

Dudnik – WCLC 2017

Immunotarget- Low benefit of immunotherapy in case of molecular alteration...need for specific studies

Driver	n	RR	PFS	OS	Impact (+/X) on PFS of				Comments
					PDL1	Smoking	Nb line	Subtype	
Total		19%	2.8	13.3					Outcome consistent with registration trials for ICI
KRAS	271	26%	3.2	13.5	+	Х	Х	Х	Clear benefit across all subgroups
EGFR	125	12%	2.1	10	+	Х	Х	Х	Could be considered in PDL1 + after TKIs exhaustion
BRAF	43	24%	3.1	13.6	Х	+	Х	NA	Could be considered in smokers
MET	36	16%	3.4	18.4	NA	Х	NA	Х	Could be considered after
HER2	29	7%	2.5	20.3	NA	+	Х	NA	conventionnal treatment
ALK	23	0	2.5	17					
RET	16	6%	2.1	21.3	Х	Х	Х	NA	Poor outcome. New biomarker needed.
ROS1	7	17%	-	-					

Julien MAZIERES et al, ASCO 18

D.Planchard et al, annals onco 2018

MET aberrations in NSCLC

C3001_302168/GTAGACTACOGAGCTACTTTT NET a Vitti Vittitie 228815-288-20CTTCTCTCTGTTTA c.3028+1G>T A STORAT MET exon 14 MET LG-----SVDYRATEP alterations NETeon 14 amplification c 3024 3028delAGAAGGTATATT C3017 30286elCTTTTCCAGAAGGTA MET MET MET exon14 **MET** as a secondary/co-driver **Overexpression** Amplification Skipping 25-75% 3-7% 3% EGFR EGFR EGFR TKI mutation mutation CR MET Downstream amplification pathway activation Decreased degradation Drilon A et al, J Thoracic Oncol, 2016

Paik – Cancer Discovery 2015 * Tong - Clin Cancer Res 2016

ROUSSY MET as a primary drive

GUSTAVE/

High ORR Modest

<u>Criz</u> <u>Tep</u>

- Potent
- Selective
- Tolerable
- CNS Activity

Capmatinib	
Savolitinib	

Type 1 MET Inhibitors

Crizotinib

Kinase	IC ₅₀ (nM) mean*	Selectivity ratio
c-MET	8	iπ.
ALK	20	2X
DON	298	34X
RON	189	22X
	294	34X
AXI	322	37X
Tie-2	448	52X
Trk A	580	67X
Trk B	399	46X
Abl	1,159	166X

Tepotinib

Cui JJ, et al, J Med Chem. 2011 Sep 22;54(18):6342-63; Bladt F, et al, Clin Cancer Res. 2013 Jun 1;19(11):2941-51.

Tumour shrinkage seen with crizotinib or capmatinib treatment in intermediate and high <u>MET amplified</u>

Camidge DR, et al. ASCO 2014. J Clin Oncol. 2014;32:5s (suppl; abstract 8001).

Schuler M, et al. ASCO 2016. J Clin Oncol. 2016;34 Suppl:abstract 9067.

GUSTAVE

AcSé trial, Response rate MET amplification

Abstract ID: #12937. Activity of crizotinib in MET or ROS1 positive (+) NSCLC: results of the AcSé trial. D. Moro-Sibilot

GUSTAVE

MET amplification

Abstract ID: #12937. Activity of crizotinib in MET or ROS1 positive (+) NSCLC: results of the AcSé trial. D. Moro-Sibilot

Response to Combined EGFR- and MET-Directed Targeted Therapy (MET amplified)

•Capmatinib + Gefitinib

- Phase 2 expansion cohort
- EGFR-mutant lung cancers with acquired resistance and "MET-positive" NSCLCs

Phase Ib/II Study

ORR: 47% in patients with MET gene copy number ≥ 6

JOURNAL OF CLINICAL ONCOLOGY	EDITORIAL

Have We Really MET a New Target?

David Planchard, Gustave Roussy, Villejuif, France

Yi-Long Wu et al, JCO 2018

TATTON (osimertinib+ Savolitinib) Preliminary anti-tumour activity in all MET-positive patients*, n = 64

Waterfall plot based on evaluable patients (n = 64): all patients dosed and with on-treatment assessment or discontinuation prior to first tumour assessment Data cut-off 31 Aug 2017 *17 patients did not have central FISH confirmation of MET-positive status (n = 6 MET-negative; n = 11 unknown by central lab); [†]Confirmed by a later scan performed at least

4 weeks after initial response observed

TATTON Part B NCT02143466

Myung-Ju Ahn et al, IASLC 2017

57 year old female never smoker with NSCLC adenocarcinoma histology, ECOG PS 1

Ex19Del, exon 19 deletion

Myung-Ju Ahn et al, IASLC 2017

NCT02143466

GUSTAVE

ROUSSV

Updated Antitumor Activity and Safety of Crizotinib in Patients With *MET* Exon 14-Altered Advanced NSCLC

*Alterations in both splice donor and acceptor regions. [†]Includes alterations in the Splice Acceptor Region, Polypyrimidine Tract, and Branching Point. [‡]Includes *MET* exon 14 alterations that are not associated with DNA coding region information. [§]White space in biomarker data rows indicates no available sample for testing, not analyzable or no results reported. bp, base pairs; UIF, uninformative.

Alexander Drilon et al, WCLC 2018

Progression-Free Survival (PFS) by Derived Investigator Assessment

• OS data were not mature at time of data cutoff: 34.8% patients had died; 40.6% still in follow-up

• Median Overall Survival (OS) estimate, months (95% CI): 20.5 (14.3, 21.8)

Shaded area in PFS Kaplan-Meier plot above represents 95% Hall-Wellner band. 95% CI estimates for PFS and OS based on Brookmeyer and Crowley method.

Alexander Drilon et al, WCLC 2018

AcSé trial, Response rate MET exon 14 mutation

Abstract ID: #12937. Activity of crizotinib in MET or ROS1 positive (+) NSCLC: results of the AcSé trial. D. Moro-Sibilot

Response rate *MET* **exon 14 mutation**

Abstract ID: #12937. Activity of crizotinib in MET or ROS1 positive (+) NSCLC: results of the AcSé trial. D. Moro-Sibilot

GUSTAVE/

ROU

VISION: A Phase II, Single-arm Trial to Investigate Tepotinib in Advanced NSCLC with METexon14-Skipping Alterations

n=39. Seven patients were excluded due to baseline/on-treatment measurement not being available.

BOR displayed at the end of the bar. NE*, BOR non-evaluable where ongoing patient has not had 2 post-baseline tumor assessments. BOR, best overall response; CR, complete response; L, liquid biopsy; NE, non-evaluable; PD, progressive disease; PR, partial response;

SD, stable disease; T, tumor biopsy.

Dr Enriqueta Felip, Vall d'Hebron University Hospital, Spain

Time on Treatment and Duration of Response (Investigator)

Dr Enriqueta Felip, Vall d'Hebron University Hospital, Spain

Poor Response to Immunotherapy in MET exon 14-altered NSCLCs

Sabari et al, ASCO 2017

GUSTAVE

Low benefit of immunotherapy in case of molecular alteration...need for specific studies

Driver	n	RR	PFS	OS	Ir	mpact (+/>	() on PFS	Comments	
					PDL1	Smoking	Nb line	Subtype	
Total		19%	2.8	13.3					Outcome consistent with registration trials for ICI
KRAS	271	26%	3.2	13.5	+	Х	Х	Х	Clear benefit across all subgroups
EGFR	125	12%	2.1	10	+	Х	Х	Х	Could be considered in PDL1 + after TKIs exhaustion
BRAF	43	24%	3.1	13.6	Х	+	Х	NA	Could be considered in smokers
MET	36	16%	3.4	18.4	NA	Х	NA	Х	Could be considered after
HER2	29	7%	2.5	20.3	NA	+	Х	NA	conventionnal treatment
ALK	23	0	2.5	17					
RET	16	6%	2.1	21.3	Х	Х	Х	NA	Poor outcome. New biomarker needed.
ROS1	7	17%	-	-					

Julien MAZIERES et al, ASCO 18

Resistance to MET-Directed Targeted Therapy

Mechanisms of acquired resistance to MET TKIs in MET exon 14mutant NSCLC

Presented Sunday, June 3, 2018. Mark M. Awad (Abst 9069)

-Secondary mutations in MET included H1094Y, G1163R, L1195F, L1195V, D1228N, Y1230H, and Y1230S.

-bypass track activation : amplification of wild-type KRAS, BRAF, and/or EGFR.

- acquired amplification of the mutated METex14 allele

Heist R et al, J Thoracic Oncol, 2016; Ou et al, J Thoracic Oncol, 2017; Bachall et al, Cancer Discov, 2017; Qi et al, Cancer Res, 2011; Tiedt et al, Cancer Res 2011; Engstrom et al, Clinical Cancer Res 2017

In summary for MET NSCLC

GUSTAVE

RET is a rare driver of multiple, diverse tymor

1. Drilon A et al. Nat Rev Clin Oncol. 2018;15:151-67 2.Kato S. et al. Clin Cancer Res 2017;23:1988-1997.

RET rearrangements

- 1–2% of unselected NSCLCs
- Clinical features: young, never or former light cigarette smokers

GUSTAVE/ ROUSSY-CANCER CAMPUS GRAND PARIS

Multi-tyrosine kinase inhibitors

Compound	IC ₅₀ (nM) In vitro kinase	IC ₅₀ (nM) Cellular kinase	IC50 (nM) In vitro kinase RET V804M	Other targets
Regorafenib	1.5	~10	NR	VEGFR1-3, BRAF, c-kit, PDGF-b
Levantinib	1.5	48	NR	VEGFR1-3, FGFR1-3, c-kit, PDGFR
Alectinib	4.8	?	53 V804L (32)	ALK (1.9 nM)
Cabozantinib	5.2	27-85	4094	VEGFR2, MET
Ponatinib	7	0.7-11	12	Bcr-abl, FGFR1-4
Sunitinib	30	40-164	55	VEGFR, PDGFR, c-kit, Flt-3
Sorafenib	47	~20-50	12	RAF, VEGFR2-3, PDGFR, c- kit, Flt-3
Vandetanib	100	NR	> 10,000	VEGFR, EGFR

Drilon A, et al. Cancer Discov. 2013;3:630-5. Kohno T, et al. Nat Med. 2012;18:375-7. Lipson D, et al. Nat Med. 2012;18:382-4. Saito M, et al. Carcinogenesis. 2014;35:2452-6. Suehara Y, et al. Clin Cancer Res. 2012;18:6599-608. Takeuchi K, et al. Nat Med. 2012;18:378-81.

RET inhibitor	Best response (% ; 95 % Cl)	Median DoT (range	Median PFS (95% Cl)	Median OS (95% CI)
Cabozantinib	37% (16.3 - 61.6)	1.6 months (0.5 -12.2)	3.6 months (1.3 - 7.0)	4.9 months (1.9 - 14.3)
Vandetanib	18% (2.3 - 51.8)	2.9 months (0.8 - 7.1)	2.9 months (1.0 - 6.4)	10.2 months (2.4 - NR)
Sunitinib	22% (2.8 - 60.0)	2.2 months (0.7 - 6.6)	2.2 months (0.7 - 5.0)	6.8 months (1.1 - NR)

Gautschi et al, JCO 2017

Need of more potent drugs

40

nt (%)

line

m ba

reduction fro

dimum

Ma

-20-

-40

-60

-80

mPFS: 5.5 months (95% CI 3.8-8.4)

Drilon et al, Lancet Oncol, 2016

Vandetanib

GUSTAVE/

mPFS: 4.7 months (95% CI 2.8-8.5)

Yoh et al, Lancet Resp Med, 2017

Lee et al, Ann Oncol, 2017

BLU-667 designed to treat RET-altered cancers

More Potent than MKI

Less Active than More Active than **BLU-667 BLU-667 Biochemical** Variant WT RET IC₅₀ (nM) **RET** wildtype 0.4 RET V804L RET V804L 0.3 RET V804M RXDX-105 Vandetanib RET V804M 0.4 Cabozantinib RET M918T RET M918T 0.4 CCDC6 RET CCDC6-RET 0.4

VEGFR-2

0.0001×

Subnanomolar potency¹

Kinome selectivity for RET

1. Subbiah V et al. Cancer Discovery April 15 2018

0.01×

IC50 BLU-667/IC50 compound

1×

100×

Broad anti-tumor activity against RET-altered cancers

Durable activity

Vivek Subbiah et al, Cancer discovery 2018

Vivek Subbiah et al, AACR 2018

LOXO-292 is a potent and selective RET inhibitor

LOX-292: a new potent inhibitor of RET

RET fusion-positive NSCLC			
Enrolled	38		
Eligible for response evaluation	38		
Overall Response Rate (95% CI)	26/38 68% (51% - 83%)		
Confirmed ORR*	25/37 68% (50% - 82%)		
CR	-		
PR**	26		
SD	8		
PD	2		
NE	2		

GUSTAVE

4/4 confirmed intracranial responses (1 CR, 3 PR) in patients with measurable (> 5 mm) intracranial lesions

▼ pending confirmation; * Excludes one patient with unconfirmed PR pending confirmation at time of data cut-off; ** 25 confirmed PR, 1 unconfirmed PR pending confirmation Follow-up as of July 19, 2018.

Geoffrey R. Oxnard et al, WCLC 2018

Duration of LOXO-292 in RET fusion-positive NSCLC

NSCLC Patients enrolled as of April 2, 2018. Follow-up as of July 19, 2018.

Geoffrey R. Oxnard et al, WCLC 2018

GUSTAVE

RET: the next big target...

Study	Drug	n	Response rate	PFS
Drilon A, 2016	Cabozantinib	25	28%	NR
Lin JJ, 2016	Alectinib	4	50%	Duration trtt: 6m
Lee SH, 2017	Vandetanib	18	18%	4.5 m.
Yoh, K, 2017	Vandetanib	19	53%	4.7 m.
Velcheti, 2016	Lenvatinib	25	18%	7.3 m.
Gaustchi O, 2017	Various (registry)	53	18 to 37%	2.3 m.
Subbiah V, 2018 (ASCO)	vandetanib + everolimus	13	54% (7/13)	4.4m
Subbiah V, 2018 (AACR)	BLU-667	53 (19 NSCLC)	50% (NSCLC)	Duration trtt: 3.9m
Drilon A, 2018 (ASCO)	LOXO-292	82 (38 NSCLC)	68%	N.A

Drilon A, Lancet Oncol 2016; Lin JJ, JTO 2016; Lee SH, Lancet Resp Med 2016; Yoh K, Lancet Respir Med 2016; Gaustchi O, JCO 2017

Targeting HER2 aberrations

HER2 mutations in ~1–4% and HER2 amplifications in 2–5%

Antibody-drug ConjugateTrastuzumab Emtansine (T-DM1) in Pts with Previously Treated HER2-Overexpressing

	IHC 2+ (n=29)	IHC 3+ (n=20)	All (N=49)
Median PFS, mo	2.6	2.7	2.6
(95% CI)	(1.4, 2.8)	(1.4, 8.3)	(1.4, 2.8)

*Indicates positive HER2 amplification; U indicates unknown HER2 amplification; All other patients' ISH status is negative

Thomas Stinchcombe et al, ASCO 2017

Phase 2 trial of ado-trastuzumab emtansine for pts with HER2 amplified or mutant cancers

Bob T. Li, MD et al, WCLC 2017, Bob T.Li et al, ASCO 2018

GUSTAVE

Concurrent HER2 amplification observed in 2 of 18 (11%)

NGS	FISH (HER2/CEP17)	ІНС	Mass spectrometry (amol/ug)	Partial Response
Exon 20 p.A775_G776insYVMA	1.1 (2.7/2.5)	0	NA	Yes
Exon 20 p.A775_G776insYVMA	1.8 (8.1/4.5)	2+	642	
Exon 20 p.A775_G776insYVMA	NA	NA	NA	
Exon 20 p.A775_G776insYVMA	1.4 (4.5/3.3)	1+	586	Yes
Exon 20 p.A775_G776insYVMA	1.9 (5.6/2.9)	1+	548	Yes
Exon 20 p.G778_P780dup	1.6 (7.6/4.8)	1+	0	
Exon 20 p.G778_P780dup	1.8(4.6/2.5)	2+	507	Yes
Exon 20 p.G778_P780dup	1.4 (5.8/4.2)	2+	NA	
Exon 20 p.G778-779 insCPG	1.6(4.3/2.7)	0	NA	
Exon 20 p.G776_V777>VCV	NA	NA	NA	Yes
Exon 20 p.G776delinsVC	1.6 (5.7/3.6)	0	205	Yes
Exon 19 p.L755P	1.5 (3.2/2.1)	2+	434	
Exon 19 p.L755P	NA	0	NA	
Exon 17 p.V659E	1.2 (2.4/2.0)	2+	NA	
Exon 17 p.V659E	1.1 (2.3/2.0)	2+	688	Yes
Exon 8 p.S310F amplification fold change 2.8	4.1 (8.4/2.5)	2+	1495	Yes
Exon 8 p.S310F	1.8 (3.2/1.8)	0	0	
Exon 8 p.S335C	2.4 (4.8/2.0)	2+	902	

Bob T.Li et al, JCO 2018

Updated results of a phase 1 study of DS-8201a in HER2-expressing or -mutated advanced NSCLC

• DS-8201a was designed with the goal of improving critical attributes of an ADC ADC, antibody drug conjugate.

Junji Tsurutani et al, WCLC 2018

Updated results of a phase 1 study of DS-8201a in HER2-expressing or -mutated advanced NSCLC

GUSTAVE

CANCER CAMPUS

IHC by local laboratory testing.

E20, exon 20 insertion; EC, single base pair substitution at extracellular domain; IHC, immunohistochemistry; ISH, in situ hybridization; NSCLC, non-small cell lung cancer; NE, not examined or missing; TM, single base pair substitution in transmembrane domain. Junji Tsurutani et al, WCLC 2018

Efficacy Outcomes (Efficacy Evaluable Subjects)

	Confirmed ORR*, % (n/N)	DCR, % (n/N)	DOR, median (range), months	TTR, median (range), months	PFS, median (range), months
HER2-expressing or HER2-mutated NSCLC N = 18	58.8% (10/17)	83.3% (15/18)	9.9 (0.0+, 11.5)	1.4 (1.0, 4.2)	14.1 (0.9, 14.1)
HER2-mutated NSCLC n = 11	72.7% (8/11)	100% (11/11)	11.5 (0.03+, 11.5)	1.4 (1.0, 4.2)	14.1 (4.0+, 14.1)

Data cutoff, August 24, 2018.

*Confirmed response includes subjects who had ≥2 postbaseline scans, had progressive disease, or discontinued treatment for any reason prior to second postbaseline scan.

+ after value indicates censoring.

DCR, disease control rate; DOR, duration of response; HER2, human epidermal growth factor receptor 2; NSCLC, non-small cell lung cancer; ORR, objective response rate; PFS, progression-free survival; TTR, time to response.

Junji Tsurutani et al, WCLC 2018

Example CT Image from Responder to DS-8201a

- 23 years old
- Female
- Nonsmoker
- · History of Type 1 Diabetes
- HER2 12 bp insertion in exon 20
- January 2017: presented with cough and SOB
 - Diagnosed with stage IV nonsquamous NSCLC
 - Carbo/Pem 1 cycle
- February–June 2017: switched to Carbo/Nabpaclitaxel due to LFT elevations
 - Best response SD
- September–December 2017: switched to Carbo/ Pem due to progression
 - Four cycles
 - Best response SD
 - · Last scan with slight increase in disease
 - Recommended HER2 targeted therapy; came to DFCI
- February 2018: started DS-8201a
 - Symptomatic with cough and DOE
 - Status: PR (confirmed)

Images courtesy of Dr. Pasi Jänne. Special thanks to Dr. Pasi Jänne and Dr. Ian Krop of DFCI.

bp, base pair; Carbo, carboplatin; CT, computed tomography; DFCI, Dana-Farber Cancer Institute; DOE, dyspnea on exertion; HER2, human epidermal growth factor 2; IV, intravenous; LFT, liver function test; Nab, nab-paclitaxel; NSCLC, non-small cell lung cancer; Pem, pemetrexed; PR, partial remission; SD, stable disease; SOB, shortness of breath.

HER2 insertion exon 20

February 2018 – baseline

May 2018 – C5D1

Poziotinib is a selective (mut vs wt) inhibitor of EGFR and HER2 exon 20 mutations *in vitro*

GUSTAVE

CANCER CAMPIN

JV Heymach, University of Texas MD Anderson Cancer Center, USA

A Phase II Trial of Poziotinib in EGFR and HER2 exon 20 Mutant Non-Small Cell Lung Cancer (NSCLC)

Progression Free Survival

Poziotinib efficacy in HER2 Exon 20 insertion mutant NSCLC

Conclusions:

Encouraging activity has prompted a confirmatory, international, multicenter study in *EGFR* and *HER2* exon 20 mutant NSCLC patients which is currently enrolling (NCT03318939) including a first-line cohort and development of a pan-tumor basket study

Adapted from Heymach JV. OA 02.06 (WCLC 2018)

TRK fusions found in diverse cancer histologies

Estimated 1,500–5,000 patients harbor TRK fusion-positive cancers in the United States annually

Hyman ASCO 2017

GUSTAVE

Entrectinib, first in class, antitumor activity in NTRK1/2/3 fusions

A.Drilon et al, Can Disc 2017

STARTRK-2 NTRK Enrollment

GUSTAVE/

Larotrectinib (LOXO-101), a selective TRK inhibitor

Diversity of cancers treated - 17 unique types

Efficacy of Larotrectinib in TRK Fusion– Positive Cancers in Adults and Children

GUSTAVE/ ROUSSY-CANCER CAMPUS GRAND PARIS

A. Drilon et al, NEJM 2018

LOXO-195 to Address TRK Acquired Resistance

PRESENTED AT: 2018 ASCO

Larotrectinib (LOXO-101)

Tumor type	Fusion	Resistance mutation
Colorectal	TPM3-NTRK1	TRKA G595R
Colorectal	LMNA-NTRK1	TRKA G595R
NSCLC	TPR-NTRK1	TRKA G595R
Sarcoma*	TPM3-NTRK1	TRKA G595R
IFS	ETV6-NTRK3	TRKC G623R
Cholangio* LMNA-NTRK1		TRKA F589L [*] + GNAS Q227H

TRK solvent front mutations detected in 5 of 6 patients with acquired resistance. First 2 patients successfully treated with LOXO-195. LOXO-195 Treatment

Hyman ASCO 2017, Drilon Can Disc 2017

GUSTAVE

New data to come...

A phase 1 study of the next-generation ALK/ROS1/TRK inhibitor ropotrectinib (TPX-0005) in patients with advanced ALK/ROS1/NTRK+ cancers (TRIDENT-1)

Presented Monday, June 4, 2018. Alexander E. Drilon (Abst 2513) 65 pts (28 ALK+, 29 ROS1+, and 8 NTRK+)

DS-6051b is an oral, small molecule receptor TKI with high affinity for ROS1 and NTRK kinases First-in-human study of <u>DS-6051b</u> in patients (pts) with advanced solid tumors (AST) conducted in the US

Presented Monday, June 4, 2018. Kyriakos P. Papadopoulos (Abst 2514)

Annals of Oncology 29 (Supplement 4): iv192–iv237, 2018 doi:10.1093/annonc/mdy275

CLINICAL PRACTICE GUIDELINES

Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

D. Planchard¹, S. Popat², K. Kerr³, S. Novello⁴, E. F. Smit⁵, C. Faivre-Finn⁶, T. S. Mok⁷, M. Reck⁸, P. E. Van Schil⁹, M. D. Hellmann¹⁰ & S. Peters¹¹, on behalf of the ESMO Guidelines Committee*

In summary, promizing new drugs for old or new targets...

Diagnostic 1. Multidisciplinary discussion to determine optimal procedure for tissue procedure 2. workup Biopsy 3. Morphology Review of patient and tumour data 4. Molecular Integrated NGS-based assay to detect mutations, amplifications, and translocations profiling Patient EGFR ROS1 BRAF RET NTRK1/2/3 HER2 No actionable MET selection . alterations ALK NRG1 PD-L1. TMB Treatment Cabozantinib Gefitinib. Entrectinib Trastuzumab Dabrafenib Crizotinib Crizotinib TDM-1 Vandetanib Larotrectinib erlotinib. + trametinib Cabozantinib Neratinib+/afatinib. Capmatinib Sunitinib Cabozantinib Ceritinib **Temsirolimus** Lenvetanib DS-6051b dacomitiinb Vemurafenib Savolitinib Lorlatinib Afatinib osimertinib Tepotinib Alectinib Ropotrectinib Cabozantinib Merestinib Ponatinib Dacomatinib Entrectinib **BLU-667** Poziotinib J.Maziere – Glesatinib Crizotinib ERBB3 inh Ropotrectinib LOXO-292 XMT-1522 Alectinib DS-6051b ASCO Abst **TAK-788** Ceritinib DS-8201a Brigatinib Lorlatinib Therapy switch/combination based on re-biopsies or liquid therapy

THANK YOU!

Acknowledgments

Benjamin BESSE Jean-Charles SORIA Frank Aboubakar Thierry LE CHEVALIER Laura MEZQUITA

