Les marqueurs prédictifs en immunothérapie : des AMM conditionnées aux marqueurs en développement

Julien Mazières,
Service de Pneumologie, CHU Toulouse
Université Paul Sabatier
INSERM UMR1037
mazieres.j@chu-toulouse.fr

Quelques idées reçues

L'immunologie est trop compliquée pour trouver un biomarqueur

Quelques idées reçues

L'immunologie est trop compliquée pour trouver un biomarqueur

Immunothérapie en oncologie thoracique

Comment mieux faire? Etude CHECKMATE 063 (nivolumab epidermoides prétraités)

Les biomarqueurs en immunothérapie

Les biomarqueurs en immunothérapie

Expression de PDL1 dans le CBNPC

 Expression de PDL1 dans les tumeurs solides et réponses aux ICI : méta-analyse

Study and Cancer Type	No. of	Positive Total No. of Patients	No. of	Negative Total No. of Patients	Weight (%)	Odds Ratio IV, Random (95% CI)	Odds Ratio IV, Random (95% CI)
NSCLC							
Antonia et al ¹⁶	14	49	1	9	0.7	3.20 (0.37 to 28.01)	
Borghaei et al ¹⁵	34	95	14	136	4.0	4.86 (2.43 to 9.72)	
Brahmer et al ¹⁴	9	42	11	75	2.7	1.59 (0.60 to 4.21)	-
Fehrenbacher et al ⁵⁰	11	50	10	94	2.8	2.37 (0.93 to 6.05)	
Garon et al ¹²	50	176	3	28	1.9	3.31 (0.96 to 11.45)	
Gettinger et al ¹¹	5	33	3	35	1.4	1.90 (0.42 to 8.70)	
Gettinger et al ²⁰	8	26	3	20	1.4	2.52 (0.57 to11.10)	-
Herbst et al ¹³	1	7	6	33	0.7	0.75 (0.08 to 7.44)	
Herbst et al I ¹⁹	86	290	40	400	5.9	3.79 (2.51 to 5.73)	
Rittmeyer et al ⁴⁹	29	129	28	292	4.8	2.73 (1.55 to 4.83)	 -
Rizvi et al ¹⁷	6	25	7	51	2.0	1.98 (0.59 to 6.70)	-
Spigel 2015	14	43	28	136	3.6	1.86 (0.87 to 3.99)	
Verschraegen et al ¹⁸	6	28	1	16	0.7	4.09 (0.45 to 37.53)	-
Wakelee et al ⁴⁸	86	302	122	659	6.7	1.75 (1.28 to 2.41)	
Subtotal		1,295		1,984	39.5	2.51 (1.99 to 3.17)	•
Total events	359		277				

PD-L1 and evidence-based thresholds to use

Immunotherapy (IO)	Nivolumab	Pembrolizumab	Durvalumab	Avelumab	Atezolizumab
Detection antibody	28-8	22C3	SP263	73-10	SP142
IHC platform	Dako	Dako	Ventana	Dako	Ventana
Cell types scored for NSCLC	тс	тс	тс	тс	TC & IC
Cut-off definitions for positivity (complementary vs companion)	>5%	First line: PD-L1+ ≥50% Late lines: PD-L1+ ≥1%	>25%	None	None
Estimated PD-L1 biomarker positivity in 2 nd line at registration level	100%	-70%			100%
Estimated PD-L1 biomarker positivity in 1 st line at registration level	~55%	~30%	?		

- Harmonisation du test PDL1 dans différents centres avec différents tests.
- Les tests 28-8, 22C3 et SP263 ont des performances proches.
- Possibilité de développer des tests locaux.

		Dako		Ventana		Leica		
	Center 1	Center 2	Center 3	Center 4	Center 5	Center 6	Center 7	Reference
28-8	Ref.	0.94	0.79	0.8	0.73	0.6	0.58	28-8 (center 1)
22C3	Ref.	0.91	0.82	0.81	0.77	0.5	0.62	22C3 (center 1)
SP263	0.83	0.83	0.86	0.81	Ref.	0.83	0.86	SP263 (center 5)
SP142	0.68	0.38	0.61	0.43	0.45	0.78	0.81	SP263 (center 5)
E1L3N	0.63	0.65	0.77	0.6	0.81	0.75	0.78	SP263 (center 5)

 Harmonisation du test PDL1 dans différents centres avec différents tests.

Les biomarqueurs en immunothérapie

Microenvironnement

Les trois phénotypes histologiques observés dans les cancers

INFLAMMATOIRE

Cellules-T CD8+ infiltrées mais non-fonctionnelles

EXCLUSION IMMUNE

Cellules-T CD8+ accumulées mais n'ont pas infiltré la tumeur

DESERT IMMUN

Cellules-T CD8+ absentes de la tumeur et de sa périphérie

- Etude IMPower Chimio + Beva +/- atezo
- Intérêt du Teff: The T-effector (Teff) gene signature is defined by expression of PD-L1, CXCL9 and IFNγ.

IMpower150 study populations and objectives

 Intérêt du Teff: The T-effector (Teff) gene signature is defined by expression of PD-L1, CXCL9 and IFNy.

INV-assessed PFS in Teff-high WT (Arm B vs Arm C)

 Intérêt du Teff: The T-effector (Teff) gene signature is defined by expression of PD-L1, CXCL9 and IFNγ.

PFS in key biomarker populations

Reck M, ESMO-IO 2017

 LIPI score (Lung Immune Prognostic Index): dLNR (Leucocytes/Leuco-Neutro et LDH)

Immunothérapie

Chimiothérapie

- Analyse single-cell et prédiction de la réponse aux anti PD1
- Caractérisation de l'infiltrat immunitaire dans le sang périphérique
- Réponse au niveau du compartiment lymphocytaire

• Cellules myéloïdes circulantes: m-MDSC

Marvel and Gabrilovich, J clin invest 2015

- Cellules myéloïdes circulantes: m-MDSC
- Faible taux de m-MDSC associé à une meilleure survie des patients traités par immunothérapie

% M-MDSC at baseline (Cox proportional hazards model for continuous variables)						
Overall survival	HR [95% CI] 1.08 [1.01; 1.14]	P=0.02				
Progression free-survival	HR [95% CI] 0.8 [1.03; 1.15]	P= 0.004				

Microenvironnement

 Importance de la présence de lymphocytes CD8 à proximité de la tumeur (Exemple dans le mélanome traité par pembrolizumab)

Microenvironnement

Co-infiltration de cellules immunitaires dans les tumeurs PDL1 +.
 (Exemple dans le CBNPC traité par atezolizumab)

Exemple K ORL

Carcinome malpighien ORL

Faible infiltrat lymphocytaire PD-L1 élevé (rouge)

Fort infiltrat lymphocytaire PD-L1 bas (rouge), violet

Les biomarqueurs en immunothérapie

 Les peptides mutés issus de mutations de l'ADN sont reconnus par les lymphocytes T CD8+ et CD4+

> Robbins PF, Nat Med 2013 Linneman C, Nat Med 2014

 La réponse des lymphocytes T à ces néo-antigènes contribue à la réponse clinique à l'immunothérapie

Schumacher TN, Cancer Cell 2015

 Analyse de la réponse au pembrolizumab dans le CBNPC selon la charge mutationnelle.

 Mise en évidence d'une signature de néo-épitopes prédictive de la survie

Rizvi N, Science 2015

• Mutations et néo-antigènes selon les cancers.

Ludmil B. Alexandrov,^{1,2,3*} Young Seok Ju,⁴ Kerstin Haase,⁵ Peter Van Loo,^{5,6} Iñigo Martincorena,⁷ Serena Nik-Zainal,^{7,8} Yasushi Totoki,⁹ Akihiro Fujimoto,^{10,11} Hidewaki Nakagawa,¹⁰ Tatsuhiro Shibata,^{9,12} Peter J. Campbell,^{7,13} Paolo Vineis,^{14,15} David H. Phillips,¹⁶ Michael R. Stratton^{7*}

• Charge mutationnelle et réponse à l'immunothérapie

 Impact de la charge mutationnelle sur la réponse au nivolumab (essai CHECKMATE 026)

 Impact de la charge mutationnelle sur la réponse à nivolumab + ipilimumab (essai CHECKMATE 227)

Hellmann M, NEJM 2018

 Impact de la charge mutationnelle sur la réponse à nivolumab + ipilimumab (essai CHECKMATE 227)

 Impact de la charge mutationnelle sur la réponse à nivolumab + ipilimumab (essai CHECKMATE 227)

 Impact de la charge mutationnelle sur la réponse à nivolumab + ipilimumab dans le CPC

Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer

Matthew D. Hellmann, 1,11,12,* Margaret K. Callahan, 1,11 Mark M. Awad, 2 Emiliano Calvo, 3 Paolo A. Ascierto, 4 Akin Atmaca, 5 Naiyer A. Rizvi, 6 Fred R. Hirsch, 7 Giovanni Selvaggi, 8 Joseph D. Szustakowski, 9 Ariella Sasson, 9 Rvan Golhar 9 Patrik Vitazka 9 Han Chang 9 William J. Geese 9 and Scott J. Antonia 10

Comment analyser la charge mutationnelle ?

- NGS
 - Whole exome
 - RNAseq
 - Panel ciblé de gènes: quantification des mutations somatiques après exclusion des drivers oncogéniques et des polymorphismes de la lignée germinale. Ex.

FoundationOne

- Etude plus qualitative par analyse des épitopes néo-antigéniques

- Combien de gènes doit comporter le test TMB?
- Analyse modélisée en faveur de panel 300+ genes pour la détermination de la TMB

• Combien de gènes doit comporter le test TMB?

MSK-Impact

Oncomine TML

- FDA cleared +
 Actionable mutations +
 Outsource service High DNA input -
- RUO/LDT Separate test In house +
 DNA input 20ng +

Good correlation with WES

• Exigence de l'analyse de la charge mutationnelle

CheckMate 227: Rejection rate 42%

Le problème du seuil dans le TMB

The threshold issue

• Attention au faux positif de l'aneuploidie

Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy

Teresa Davoli, Hajime Uno, Eric C. Wooten, Stephen J. Elledge*

Aneuploidy in NSCLC correlates with

- High TMB
- Decreased immune signature

- TMB dans le sang circulant ?
- TMB sérique et bénéfice clinique dans le CBNPC traité par atezolizumab
- Lien tissu vs sang

- TMB dans le sang circulant ?
- TMB sérique et bénéfice clinique dans le CBNPC traité par atezolizumab

 TMB sérique et bénéfice clinique dans le CBNPC traité par atezolizumab

Table 1 OS and PFS HRs in the OAK BEP with valid bTMB and PD-L1 IHC results					
	N	PFS HR (95% CI)	OS HR (95% CI)		
bTMB≥16	156	0.64 (0.46- 0.91)	0.64 (0.44- 0.93)		
TC3 or IC3	103	0.62 (0.41-0.93)	0.44 (0.27-0.71)		
bTMB≥16 and TC3 or IC3	30	0.38 (0.17-0.85)	0.23 (0.09-0.58)		
N represents the number of patients in each subgroup. IC3 or IC3, \geq 50% of tumor cells or \geq 10% of tumor-infiltrating immune cells expressing PD-L1.					

 Corrélation altérations génomiques et réponse aux anti PD1 / PDL1 dans les tumeurs solides

 Corrélation altérations génomiques et réponse aux anti PD1 / PDL1 dans les tumeurs solides

• Et les addictions oncogéniques ?

Driver	PD	SD	CR/PR
BRAF	46%	30%	24%
MET	50%	34%	16%
KRAS	51%	23%	26%
HER2	67%	26%	7%
EGFR	67%	21%	12%
ALK	68%	32%	0
RET	75 %	19%	6%
ROS1	83%	0	17%
TOTAL	57%	24%	19%

- Impact de STK11-LKB11
- Démontré en co-mutation de KRas

Dans les CBNPC PDL1 +

Skoulidis F et al., Cancer Discovery, 2018

Skoulidis, Cancer Disc 2018

Score composite avec 5 éléments sur biopsie liquide

Comparison of survival curves (Logrank test) P = 0.0009

PFS
Training Inivata Immune High = 14 mos (14 - 14 mos)
Inivata Immune Low = 2 mos (2 - 2 mos)
Test Set Inivata Immune High = 10 mos (8 - 24 mos)
Inivata Immune Low = 1.5 mos (1.5 - 2 mos)

Hazard Ratio - **Training** 3.582 (1.50-8.57) Hazard Ratio - **Test** 2.866 (1.22-6.73)

Les biomarqueurs en immunothérapie

 Intérêt du microbiome en oncologie: marqueur et ciblé thérapeutique

Routy B, Science 2018

 Intérêt du microbiome en oncologie: marqueur et ciblé thérapeutique

 Intérêt du microbiome en oncologie: marqueur et ciblé thérapeutique

- Impact de la prescription d'antibiotiques sur la réponse aux ICI
- Effet négatif sur la PFS et la survie globale de patients traités par immunothérapie

Les biomarqueurs en immunothérapie

Synthèse des tests prédictifs

	Expression de PD-L1	Charge mutationnelle	Signature inflammatoire
Technique	IHC	Séquençage	Signature d'expression
Matériel	1-2 lames FFPE	Tissu congelé. FFPE (6-10 lames ?)	2-3 lames FFPE
Technique	IHC sur lames	NGS, RNAseq, bioinformatique	Extraction ARN. Nanostring
Complexité	Faible	Elevée	Modérée
Délai	3-5 jours	2 semaines	10 jours
Prédiction	modérée	Modérée-forte	Modérée-forte
Commentaires	Méthodes variables	Complexe (difficile en routine)	Quantitatif. Automatisé

Synthèse des tests prédictifs

Biomarkers currently applied for NSCLC immunotherapy

Rizvi, Science 2015; Fehrenbacher, Lancet 2016; McGranahan, Science 2016; Kerr, ASCO 2016

Conclusion

Conclusion

Back-up

- Question 1: Quels tests ont montré leur intérêt dans un essai clinique d'immunothérapie en oncologie thoracique.
- 1. Charge mutationnelle
- 2. LIPI score
- 3. Expression de PDL1
- 4. Lymphocyte T gene signature (Teff)
- 5. Microbiote digestif

- Question 1: Quels tests ont montré leur intérêt dans un essai clinique d'immunothérapie en oncologie thoracique.
- 1. Charge mutationnelle
- 2. LIPI score
- 3. Expression de PDL1
- 4. Lymphocyte T gene signature (Teff)
- 5. Microbiote digestif

- Question 2: Quel(s) test(s) est/sont validés en routine en oncologie thoracique.
- 1. Charge mutationnelle
- 2. LIPI score
- 3. Expression de PDL1
- 4. Test Teff
- 5. Microbiote digestif

- Question 2: Quel(s) test(s) est/sont validés en routine en oncologie thoracique.
- 1. Charge mutationnelle
- 2. LIPI score
- 3. Expression de PDL1
- 4. Test Teff
- 5. Microbiote digestif

 Analyse de la réponse au pembrolizumab dans le CBNPC selon la « signature » mutationnelle.

Phase 2 data defining TMB threshold

		Method	Threshold Defined	63% vs. 0% 73%	14.5 vs. 3.7 mo.		(Rizvi et al., 2015)
Cance	Trial and treatment KN 001 Phase 1/2	WES	200 mutations (median)	vs. 13%	NR vs. 3.4 mo.		
NSCLO	Pembrolizumab	-	Atezolizumab vs.	20% vs. 4%	7.3 vs. 2.8 mo.	16.2 vs. 8.3 mo.	(Kowanetz et al., 2016)
NSCLC	POPLAR Randomized Ph. 2 Atezolizumab	FMNGS	docetaxel in ≥ 9.9 Mut/Mb	2076 VS. 476		11.0.	(H. Rizvi et al., 2018)
	MSKCC:	MSKCC NGS	7.4 mut/MB (Median)		38.6 vs. 25%		
NSCLC	various immunotherapies CM 568	-	10 mut/Mb	44% vs. 12%	7.1 vs. 2.6 mo.		(Ramalingam et al., 2018)
NSCLC	Nivolumab/ipilimumab	FM NGS	10 muovio	1770 10. 12.11		11.63 vs. 5.72	(0.1-11-1 2047)
othelial	CM 275 Phase 2 Nivolumab	WES	≥170 vs. <85 mutations	31.9% vs. 10.9%	3 vs. 2 mo.	mo.	(Galsky et al., 2017)
thelial	IMvigor210 Phase 2 Atezolizumab	FM NGS	16 mut/Mb (Upper quartile)			OS advantage	(Balar et al., 2017)
cc	KN 012 and KN 055 Pembrolizumab	WES	175 mutations		0.64	0.98	Seiwert et al, 2018

Parameter	VES	FM NGS (F1CDx)	MSKCC NGS (MSK-IMPACT)
Validation in phase 2 200 missen	se mutations	10 mut/MB	7.4 mut/MB

- Tissue requirements
- Turnaround time
- Lack of gold standard/validation
- Lack of a significant improvement in OS
- Cost (included on FM, some other panels)
- Is it specific or just predictive of utility with any immunotherapy?

Not a standard of care...yet

• Combien de gènes doit comporter le test TMB ?

Company	Test name	Test description
Caris Life Sciences Inc.	Caris Molecular Intelligence CGP+	Assay profiling mutations in tumor tissue using a 592-gene panel
Foundation Medicine Inc. (NASDAQ:FMI) (A)	FoundationOne CDx	Assay profiling mutations in tumor tissue using a 324-gene panel
Foundation Medicine Inc.; Roche (SIX:ROG; OTCQX:RHHBY)	bTMB assay	Assay profiling mutations in cell-free DNA in plasma using a 394-gene panel
Illumina Inc. (NASDAQ:ILMN) (A)	TruSight Tumor 170	Assay profiling mutations in tumor tissue using a 170-gene panel
KEW Group Inc.	Cancerplex	Assay profiling mutations in tumor tissue using a >400-gene panel
Memorial Sloan Kettering Cancer Center (A)	MSK-IMPACT	Assay profiling mutations in tumor tissue using a 468-gene panel
NeoGenomics Inc. (NASDAQ:NEO)	NeoTYPE Discovery Profile	Assay combining NGS testing of 315 molecular markers and Tumor Mutation Burden (TMB) analysis
Personal Genome Diagnostics Inc. (A)	Unnamed panel	Assay profiling mutations in tumor tissue using a >500 gene panel
Qiagen N.V. (Xetra:QIA; NYSE:QGEN) (A)	GeneRead DNAseq Mix- n-Match Panels	Customizable assay profiling mutations using 576 primer sets
Thermo Fisher Scientific Inc. (NYSE:TMO) (A)	Ion Torrent Oncomine Tumor Mutational Load Assay	Assay profiling mutations in tumor tissue using a 409-gene panel

Biocentury, Mar 15, 2018

b

244,240 unique predicted neoantigens in 249 pre-treatment tumor samples

870 neoantigens arising from driver mutations

8 neoantigens arising from driver mutations seen recurrently in CR/PR but not PD

Peptide	Mutation	Cancer type	HLA	Response
VVVGA D GVGK	KRAS p.G12D	Bladder, lung	A03:01, A11:01	3 PR
GSF A TVYKGK	<i>BRAF</i> p.G469A	Bladder, lung	A11:01, A03:01	2 PR
GSGSF A TVYK	<i>BRAF</i> p.G469A	Bladder, lung	A11:01, A03:01	2 PR
SGSF A TVYK	<i>BRAF</i> p.G469A	Bladder, lung	A11:01, A03:01	2 PR
SEIT K QEKDF	<i>PIK3CA</i> p.E545K	Bladder, lung, anal	B44:02, B44:03	1 CR, 1 PR, 1 SD
R HGGWTTKM	<i>PIK3CA</i> p.H1047R	Melanoma, HNSCC	C07:01, C07:02	2 PR, 1 SD
A R HGGWTTKM	<i>PIK3CA</i> p.H1047R	Melanoma, HNSCC	C07:01, C07:02	2 PR, 1 SD
KLVVVGA C GV	KRAS p.G12C	Lung	A02:01	2 PR, 2 SD

Figure 2. Summary of Clinical and Molecular Features Associated with Response or Non-response in Patients with NSCLC Treated with Nivolumab Plus Ipilimumab

Cancer Therapy: Clinica

Cancer Research

EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis

Justin F. Gainor¹, Alice T. Shaw¹, Lecia V. Sequist¹, Xiujun Fu², Christopher G. Azzoli¹, Zofia Piotrowska¹, Tiffany G. Huynh², Ling Zhao², Linnea Fulton¹, Katherine R. Schmily Howe¹, Anna F. Farago¹, Ryan J. Sullivan¹, James R. Stone², Subba Digumarthy², Teresa Moran⁴, Aaron N. Hata¹, Yukako Yagi², Beow Y. Yeap¹, Jeffrey A. Engelman¹, and Mari Mino-Kenudson²

Figure 2.

PÖ-L1 expression levels in paired, pre- and post-TKI biopsies among EGFR-mutant patients along with representative PD-L1 immunohistochemical images. A majority of EGFR-mutant patients (72%) exhibited consistent PD-L1 staining across both specimens, but 16 (28%) patients demonstrated variable staining across biopsing across biopsing across biopsing across biopsing across biopsing across biopsing across biopsing.

Mutations de résistance aux 10

 Analyse de la résistance au pembrolizumab dans le CBNPC selon la « signature » mutationnelle (mélanome).

- Apparition de néomutations
- Acquisition de la mutation JAK1/JAK2
- Induction de la résistance à l'interféron gamma et la présentation antigénique

Mutations de résistance aux 10

- Rôle prédictif de la SERPIn B3 et B4 dans la réponse aux anti-CTLA4 (mélanome).
- Serpin: homologues de l'antigène ovalbumine (auto-immunité)

(a) Overall survival of patients with SERPINB3 mutations in cohort 1 (n = 64) and cohort 2 (n = 110). WT, wild type; mut, mutant. (b) Overall survival of patients

Statut immunologique

- Analyse de différents marqueurs de la réponse immunologique (présentation des Ag, priming et activation)
 - Cytokines proinflammatoires (e.g., TNF- α , IL1, IFN- α)
 - Cofacteurs cellulaires: CD40L/CD40
 - Adjuvants endogènes libérés par les tumeurs: CDN (STING ligand), ATP, HMGB1
 - Produits du microbiomes digestif: TLR ligands
 - Interleukines: IL-10, IL-4, IL-13
 - Prostaglandines
 - Maturité des cellules dendritiques

Statut immunologique

- Analyse de biomarqueurs sériques dans le sang
- Etude de phase 2 atezolizumab vs docetaxel
- Intérêt de l'interféron gamma

« The cancer immunogram »

« The cancer immunogram »

Immunothérapie en oncologie thoracique

PDL1 dans le sang: CTC

Guibert N, ASCO-SITC 2018

Immunothérapie en oncologie thoracique

PDL1 dans le sang: CTC

