

Intérêt thérapeutique de la VNI dans le cadre des EABPCO infectieuses

Docteur Sandrine PONTIER - MARCHANDISE

USI et post-urgence Pneumologie, Hôpital Larrey – CHU TOULOUSE

Si vous voulez participer...

• Socrative Student à télécharger sur smartphone

English V

Liens d'intérêt

- Sociétés SADIR Assistance, Orkyn', Vitalaire : participations à des congrès, symposiums
- ANTADIR : symposium
- Société Weinmann Löwenstein : conseil scientifique
- Air Liquide Santé : comité d'experts
- Boehringer Ingelheim : comité d'experts

Qu'est-ce qu'une exacerbation de BPCO?

Événement aigu caractérisé par une aggravation des symptômes respiratoires audelà des variations quotidiennes et conduisant à une modification thérapeutique : augmentation des bronchodilatateurs (> 24h) ou ajout d'une nouvelle thérapeutique (antibiotique ou corticostéroïde)

RECOMMENDATIONS - ARTICLE IN ENGLISH AND FRENCH

Management of acute exacerbations of chronic obstructive pulmonary disease (COPD). Guidelines from the Société de pneumologie de langue française (summary)

Prise en charge des exacerbations de la bronchopneumopathie chronique obstructive (BPCO). Recommandations de la Société de pneumologie de langue française (texte court)

Rev Mal Respir, 2017, 34, 282 - 322

Les causes

Pollution atmosphérique

Arrêt du traitement de fond

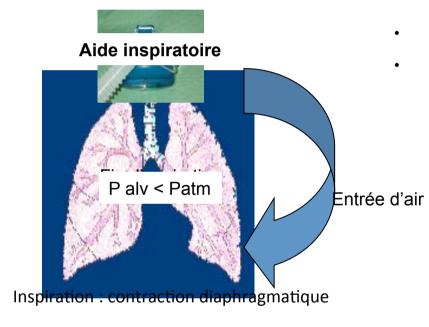
Inconnue:

Causes infectieuses

- Au moins la moitié des cas
- Virales
 - Rhinovirus
 - Virus de la grippe
- Bactériennes
 - Haemophilus influenza
 - Moraxella Catarrhalis
 - Streptococcus Pneumonia

- Purulence de l'expectoration et augmentation du volume
- Co-infections et surinfections

La VNI


- Technique de ventilation sans effraction des voies aériennes
- Le plus souvent en mode barométrique : aide inspiratoire

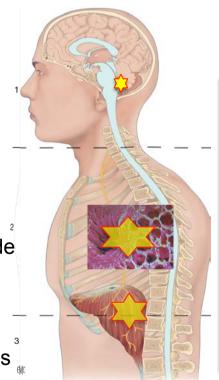
La VNI

• P inspiratoire > Patm : entrée d'air

 P expiratoire : maintien des voies aériennes ouvertes

VNI en mode barométrique

- P Inspiratoire Aide Inspiratoire
- P Expiratoire PEP



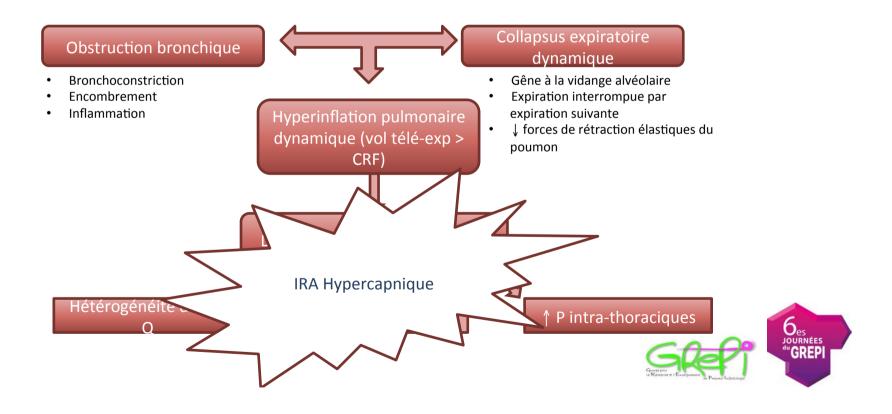
EABPCO hypercapnique: physiopathologie

1. Diminution de la commande sur encéphalopathie hypercapnique

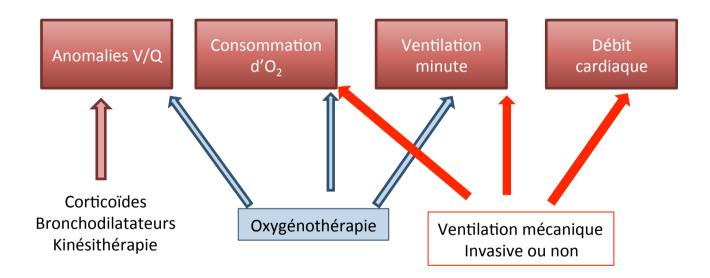
2. Augmentation de la 2 PEP intrinsèque et de la distension

3. Epuisement des muscles respiratoires

EFFETS DE LA VNI


- 1. Corriger la réponse centrale au CO₂
- 2. Diminuer la résistance des VAS (PEP)
- 3. Diminution de l'hyperinflation (PEP)

4. Aider les muscles



Physiopathologie BPCO

Bases physiopathologiques du traitement

Tableau 2 – Niveaux de reccommandation pour les indications de la VNI		
Intérêt certain Il faut faire (G1+)	Décompensation de BPCO OAP cardiogénique	
ntérêt non établi de façon certaine l faut probablement faire (G2+)	IRA hypoxémique de l'immunodéprimé Post-opératoire de chirurgie thoracique et abdominale	
	Stratégie de sevrage de la ventilation invasive chez les BPCO	
	Prévention d'une IRA post extubation	
	Traumatisme thoracique fermé isolé	
	Décompensation de maladies neuromusculaires chroniques et autres IRC restrictives	
	Mucoviscidose décompensée Forme apnéisante de la bronchiolite aiguë Laryngo-trachéomalacie	
Aucun avantage démontré Il ne faut probablement pas faire (G2-)	Pneumopathie hypoxémiante SDRA Traitement de l' IRA post-extubation Maladies neuromusculaires aiguës réversibles	
Situations sans cotation possible	Asthme Aigu Grave Syndrome d'obésité-hypoventilation Bronchiolite aiguë du nourrisson (hors forme apnéisante)	

Panel 1: Indications and contraindications for NIV in acute care

Indications

Bedside observations

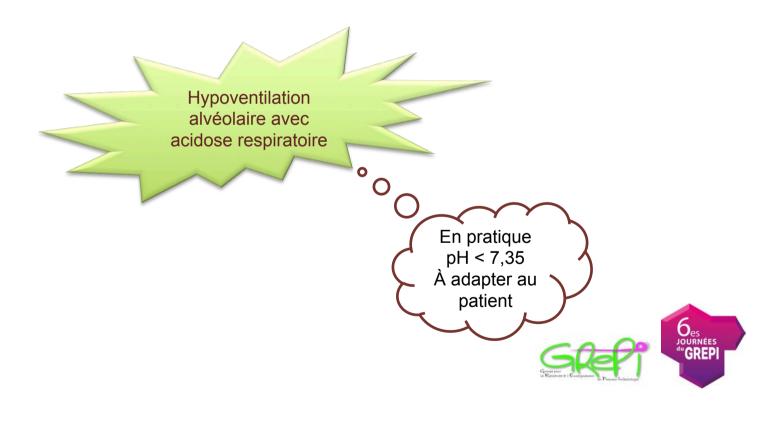
- · Increased dyspnoea—moderate to severe
- · Tachypnoea (>24 breaths per min in obstructive, >30 per min in restrictive)
- Signs of increased work of breathing, accessory muscle use, and abdominal paradox
 Gas exchange
- Acute or acute on chronic ventilatory failure (best indication), PaCO₃>45 mm Hg, pH<7.35
- Hypoxaemia (use with caution), PaO₂/F₁O₂ ratio<200

Contraindications

Absolute

- · Respiratory arrest
- · Unable to fit mask

Relative


- Medically unstable—hypotensive shock, uncontrolled cardiac ischaemia or arrhythmia, uncontrolled copious upper gastrointestinal bleeding
- · Agitated, uncooperative
- · Unable to protect airway
- · Swallowing impairment
- · Excessive secretions not managed by secretion clearance techniques
- · Multiple (ie, two or more) organ failure
- · Recent upper airway or upper gastrointestinal surgery

NIV-non-invasive ventiliation; PaCO₃-arterial partial pressure of carbon dioxide; PaO₃-arterial partial pressure of oxygen; FO₃-fraction of inspired oxygen.

La VNI en réanimation

Décompensation aiguë de BPCO

- Robert D. Ventilation mécanique au masque dans les poussées d'insuffisance respiratoire chronique. *Réan Soins Intens Med Urg* 1989 ; 5 : 401-406
- Meduri GU. Noninvasive face mask ventilation in patients with acute respiratory failure. Chest 1989; 195: 865-870
- Brochard L. Reversal of acute exacerbations of chronic obstructive lung disease by inspiratory assistance with a face mask. N Engl J Med 1990; 323: 1523-1530

La VNI dans l'IRA

- Efficacité démontrée notamment dans l'IRA hypercapnique
 - EA sévère de BPCO
 - OAP hypercapnique
- Efficacité clinique et médico-économique

The New England Journal of Medicine

Copyright, 1995, by the Massachusetts Medical Societ

Volume 333

SEPTEMBER 28, 1995

Number 13

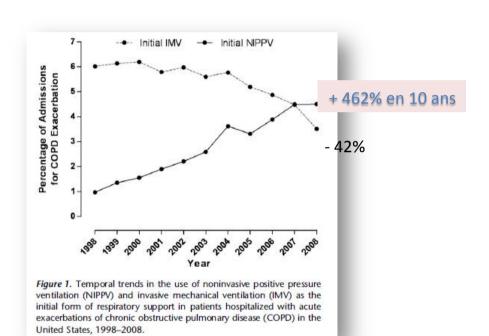
NONINVASIVE VENTILATION FOR ACUTE EXACERBATIONS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

LAURENT BROCHARD, M.D., JORDI MANCEBO, M.D., MARC WYSOCKI, M.D., FRÉDÉRIG LOFASO, M.D., GIORGIO CONTI, M.D., ALAIN RAUSS, M.D., GERALD SIMONNEAU, M.D., SALVADOR BENTIO, M.D., ALESSANDRO GASPAREITO, M.D., FRANCOIS LEBARRE, M.D., DANIEL ISABER, PH.D., AND ALAIN HARF, M.D.

La VNI diminue:

- le nombre d'intubations de 74
 à 26%
- la durée de séjour hospitalier
- les complications observées
 en réanimation de 48 à 16%
- la mortalité de 29 à 9%

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure


Clinical indication"	Certainty of evidence 1	Recommendation
Prevention of hypercapnia in COPD exacerbation	ФФ	Conditional recommendation agains
Hypercapnia with COPD exacerbation		Strong recommendation for
Cardiogenic pulmonary oedema	•••	Strong recommendation for
Acute asthma exacerbation	100000	No recommendation made
Immunocompromised		Conditional recommendation for
De novo respiratory failure		No recommendation made
Post-operative patients	ODD	Conditional recommendation for
Palliative care	⊕⊕⊕	Conditional recommendation for
Trauma	⊕⊕⊕	Conditional recommendation for
Pandemic viral illness		No recommendation made
Post-extubation in high-risk patients (prophylaxis)	⊕⊕	Conditional recommendation for
Post-extubation respiratory failure	⊕⊕	Conditional recommendation against
Weaning in hypercapnic patients	⊕⊕⊕	Conditional recommendation for

[&]quot;: all in the setting of acute respiratory failure; ¹1: certainty of effect estimates: ⊕⊕⊕⊕, high; ⊕⊕⊕, moderate; ⊕⊕, low; ⊕, very low.

Des indications en progression constante

Entre les années 1990 et aujourd'hui :

- ↑ du nombre de patients
- ↑ des indications
- Vieillissement de la population : proposition de techniques moins invasives

Réanimation 2001 ; 10 : 112-25 © 2001 Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés \$1164675600000876/FLA

CONSENSUS CONFERENCE

II FAUT
FAIRE

Noninvasive positive pressure ventilation in acute respiratory failure: report of an International Consensus Conference in intensive care medicine, Paris, France, 13–14 April 2000*

Patients hospitalized for exacerbations of COPD with rapid clinical deterioration should be considered for NPPV to prevent further deterioration in gas exchange, respiratory workload and the need for ETI.

La décompensation acide de BPCO est une indication ABSOLUE de VNI

Il faut faire VITE

- Moins de risque d'échec si :
 - pH entre 7,25 et 7,30
 - Conscience préservée
 - Moins de signes de DRA
- Mais pas dans des tableaux plus
 « légers » : risque d'intolérance
- « fenêtre d'opportunité » pour Cabrini

Il faut SAVOIR FAIRE

Tableau 1 - Contre-indications absolues de la VNI

- environnement inadapté, expertise insuffisante de l'équipe
- patient non cooperant, agite, opposant a la technique
- intubation imminente (sauf VNI en pré-oxygénation)
- coma (sauf coma hypercapnique de l'insuffisance respiratoire chronique [IRC])
- épuisement respiratoire
- état de choc, troubles du rythme ventriculaire graves
- sepsis sévère
- immédiatement après un arrêt cardio-respiratoire
- pneumothorax non drainé, plaie thoracique soufflante
- obstruction des voies aériennes supérieures (sauf apnées du sommeil, laryngo-trachéomalacie)
- vomissements incoercibles
- hémorragie digestive haute
- traumatisme crânio-facial grave
- tétraplégie traumatique aiguë à la phase initiale

Il faut
CONNAITRE les
facteurs de
risque d'échec

Tableau 4 — Critères associés à un risque d'échec accru			
Indication	À l'admission	Réévaluation précoce	
Décompensation de BPCO	pH < 7,25 FR > 35 cycles/min GCS < 11 Pneumonie Comorbidités cardio-vasculaires Score d'activité physique quotidienne défavorable.	À la 2° heure : pH < 7,25, FR > 35 cycles/min GCS < 11	

Facteurs de risque d'échec

Univariate comparison between patients that succeeded or failed after treatment with noninvasive positive pressure ventilation

	Success	Failure	p-value
Subjects n	797	236	
Age	69.1 ± 9.1	71.0±8.5	0.0041
Glasgow Coma Scale	13.7±1.9	11.6±3.0	< 0.0001
APACHE II score	18.9±5.1	25.2±6.7	< 0.0001
ABG at admission			
Pa.O ₂ mmHg	54.7±16.3	53.9 ± 19.0	0.5331
Pa.co ₂ mmHg	78.8 ± 16.2	86.0 ± 19.0	< 0.0001
pH	7.29 ± 0.06	7.25±0.08	< 0.0001
RR	28.7±5.8	32.0 ± 7.3	< 0.0001
PaO/FiO2	189.7 ± 47.2	155.1 ± 57.8	< 0.0001
ABG after 2 h			
Pa,O _o mmHg	63.4±11.9	62.8 ± 21.5	0.5972
Pa.co ₂ mmHg	69.0 ± 14.1	76.8±18.7	< 0.0001
pH	7.34±0.05	7.27 ± 0.1	< 0.0001

Data are presented as mean ± so. APACHE: acute physiology and chronic health evaluation; ABG: arterial blood gases; Pa,O_J: arterial oxygen tension; Paco, carbon dioxide arterial tension; RR: respiratory rate; FLO,: inspiratory

> Ambrosino et al, Thorax 1995 Confalonieri et al, Eur Resp J 2005

Table 2. Risk Factors for NIV Failure in Patients With Acute Hypercapnic Respiratory Failure

Poor neurologic score (Glasgow Coma Score < 11)

Tachypnea (> 35 breaths/min)

pH < 7.25

APACHE score > 29

Asynchronous breathing

Edentulous

Excessive air leak

Agitation

Excessive secretions

Poor tolerance

Poor adherence to therapy

No initial improvement within first 2 h of NIV:

No improvement in pH

Persistent tachypnea

Persistent hypercapnia

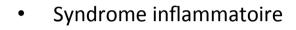
NIV - noninvasive ventilation

APACHE - Acute Physiology and Chronic Health Evaluation (Based on data in References 20-22.)

Dysfonction diaphragmatique mise en évidence sur l'échographie : serait supérieure au pH

Hill, Respi Care 2009 Marchioni et al, Crit Care 2018

LA VNI EN PRATIQUE



Hospitalisation en urgence

- Patient non suivi
- Obèse IMC 37 kg/m²
- Tabagique non sevré 55 PA
- Appareillé par PPC pour un SAOS

- Encombrement depuis 5 jours :
 Augmentin®
- Depuis quelques heures :
 cyanose, dyspnée sifflante avec
 balancement thoraco-abdominal
 et troubles de la conscience

• Gazométrie sous 4 L/mn :

- pH = 7,25

- $PaO_2 = 62 \text{ mmHg}$

- $PaCO_2 = 70 \text{ mmHg}$

Bicarbonates = 38 mmo,

- SaO₂ = 90%

Vous décidez de le ventiler

- 1. Vous utilisez sa machine puisqu'il y est habitué
- 2. Vous arrêtez l'oxygène : risque d'hypercapnie
- 3. Vous faites de la VNI avec un ventilateur du service

VNI ≠ PPC

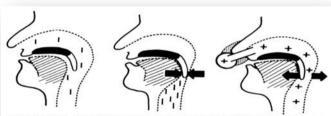
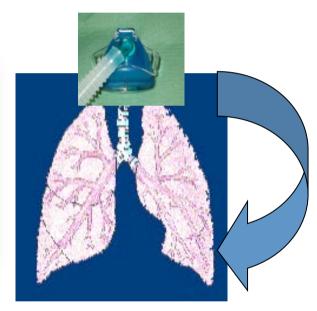
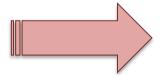



Figure 67–1. Mechanism of upper airway occlusion and its prevention by nasal CPAP. When the patient is awake (left panel), muscle tone prevents collapse of the upper airway during inspiration; during sleep, the tongue and soft palate are sucked against the posterior oropharyngeal wall (middle panel). CPAP with low pressure provides a pneumatic splint and keeps the upper airway open (right panel). (Adapted from Sullivan CE, Issa FG, Berthon-Jones M, Eves L: Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares. Lancet i:862–865, 1981.)

La PPC est une attelle pneumatique

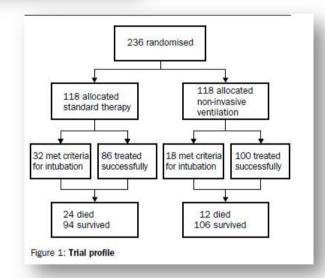
Maintient les VAS ouvertes

La VNI ventile...


Aide les muscles

Où le prendre en charge ?

- Critères de ventilation
- Signes de gravité


Indication d'USI ou de réanimation

Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial

P K Plant, J L Owen, M W Elliott

- Étude anglaise, multicentrique, randomisée
- Traitement standard versus + VNI dans services de pneumologie
- 1 IDE: 11 patients
- Formation réalisée pour l'étude, aucune expérience préalable

- VNI précoce dans acidose légère à modérée :
 - Amélioration rapide des paramètres cliniques
 - Diminution du risque IOT
 - Diminution de la mortalité intrahospitalière
- Faisable en service de médecine
 - 1 IDE / 11 patients : + 26 min temps IDE
- Cut off 7,30 : analyse de sous-groupe
 - Augmentation échec
 - Augmentation mortalité

	Standard	NIV	p
Intention-to-treat Failed	32/118 (27%)	18/118 (15%)	0.02
Died	24/118 (20%)	12/118 (10%)	0.05
Subgroup analysis pH<7:30			
Failed	16/38 (42%)	13/36 (36%)	0.64
Died	13/38 (34%)	8/36 (22%)	0.31
pH>=7·30			
Failed	16/80 (20%)	5/82 (6%)	0.01
Died	11/80 (14%)	4/82 (5%)	0.06

Table 2: Primary outcome and in-hospital mortality

Table 3 Cost effectiveness of ward based non-invasive ventilation in reducing mortality in hospital in two groups of patients (n=236)

	Standard treatment (n=118)	Non-invasive ventilation (n=118)
Costs (£):	***	227
Ward	127 355	139 243
Non-invasive ventilation	3 390*	26 664
Additional non-invasive ventilation nursing	67*	525
Intensive care unit	142 576	52 981
Total	337 435	288 073
Effectiveness of intervention:		7.02.772.00
No of deaths	24	12
No discharged	98	108
Saving with non-invasive ventilation (£)	5 3	49 362
Deaths avoided with non-invasive ventilation	\$ = \$	12

^{*}Cost due to the use of non-invasive ventilation after meeting failure criteria.

ARTICLE ORIGINAL

Ventilation non invasive dans l'insuffisance respiratoire aiguë en service de pneumologie

Noninvasive ventilation for acute respiratory failure in a pulmonary department

C. Perrin^{a,*}, F. Rolland^a, F. Berthier^b, Y. Duval^a, V. Jullien^a

Reçu le 30 septembre 2014 ; accepté le 11 mars 2015 Disponible sur Internet le 3 juin 2015

	Pas de VNI	VNI		
		Groupe PaCO ₂ < 45 mmHg	Groupe PaCO ₂ ≥ 45 mmHg	
Épisodes, n	56	10	39	
IGS II	16±5	22±7	21±4	
рН	$7,40 \pm 0,1$	$7,41 \pm 0,02$	$7,32 \pm 0,02$	
PaCO ₂ (mmHg)	42 ± 10	37 ± 5	63 ± 18	
HCO-3 (mmol/L)	25±5	24±4	31 ± 4	
PaO ₂ air (mmHg)	52 ± 9	43 ± 17	52 ± 15	
FR (cycles/minute)	25±8	38 ± 11	26±7	

- Service de pneumologie avec « lits attentifs »
- Taux global d'échec de 26,5%
 - Supérieur dans le groupe non hypercapnique
- Décès : > dans groupe non hypercapnique (patients limités à l'entrée en réanimation)

[°] Service de pneumologie, pôle des spécialités médicales, centre hospitalier de Cannes, 15, avenue des Broussailles, 06401 Cannes, France

^b Département d'information médicale, hôpital Princesse Grâce, Principauté de Monaco, Monaco, France

Revue des Maladies Respiratoires (2017) 34, 430–438

Disponible en ligne sur

ScienceDirect

www.sciencedirect.com

Elsevier Masson France

EM consulte

www.em-consulte.com

RECOMMANDATIONS

Quand débuter, comment gérer et quand arrêter la ventilation non invasive ?*

When to start, how to manage and when to stop non-invasive ventilation during acute COPD exacerbation?

A. Rabbat

Ventilatory Support. Some patients need immediate admission to the respiratory care or intensive care unit (ICU) (**Table 5.4**). Admission of patients with severe exacerbations to intermediate or special respiratory care units may be appropriate if adequate personnel skills and equipment exist to identify and manage acute respiratory failure. Ventilatory support in an exacerbation can be provided by either noninvasive (nasal or facial mask) or invasive (oro-tracheal tube or tracheostomy) ventilation. Respiratory stimulants are not recommended for acute respiratory failure. 32

GOLD COPD 2018

Ventiler en salle ?? Oui, dans certaines conditions...

- Formation du personnel
 - Laquelle?
- Effectifs médicaux et paramédicaux adaptés
 - C'est-à-dire ?
- Structure de réanimation ou d'USIR à proximité
- Respect des contre-indications
- Être attentif aux FDR d'échec

Quel ventilateur?

Ventilateur de réanimation

Bonnes performances
Monitorage complet

FiO₂ stable

Réglages assez « intuitifs »

- Disponibles uniquement en réanimation
- Pas ou peu d'adaptation aux fuites malgré les modules
 VNI »
- Moins d'interfaces disponibles

Ventilateurs dédiés à la VNI

Monitorage complet
FiO₂ stable
Bonne compensation des

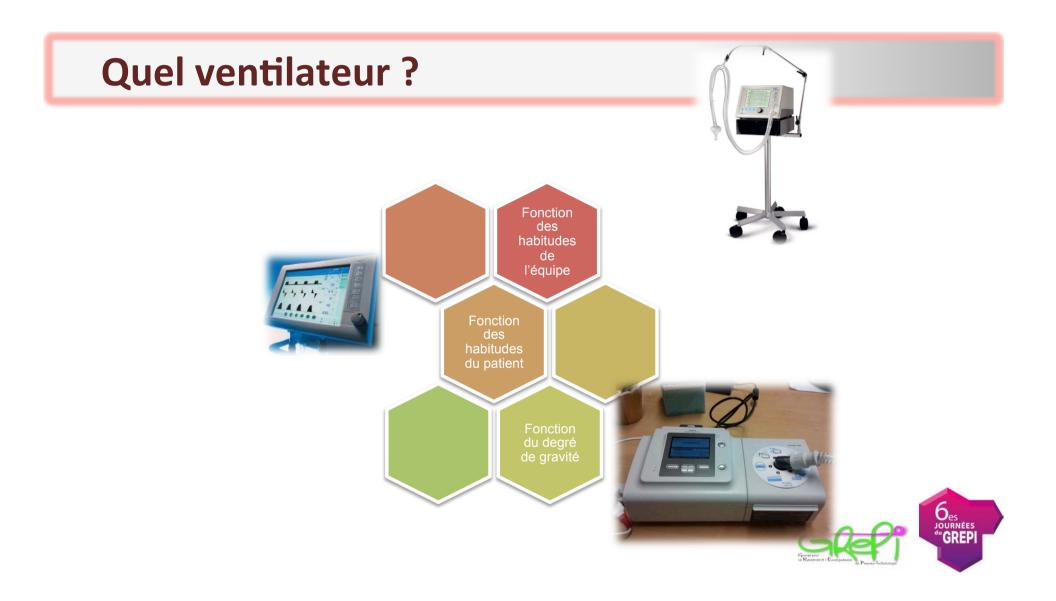
Peuvent être une alternative dans certains secteurs

Ventilateur de domicile

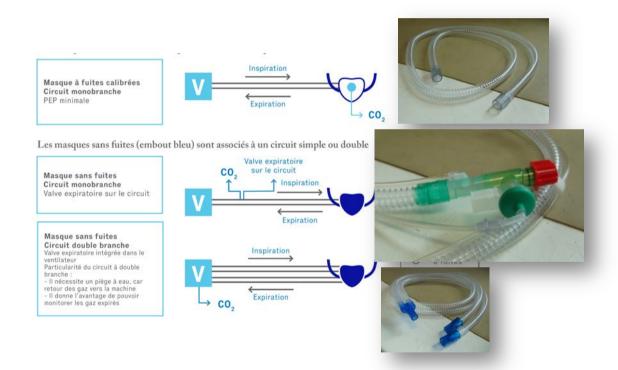
Dédiés à la VNI... meilleurs

Connus des pneumologues (et des patients)

Bonne adaptation aux fuites


Interfaces variées

- Monitorage moins fiable ou absent
- O₂ mural
- Moins intuitif pour un non-initié



Vous utilisez un ventilateur de réanimation

- 1. Masque nasal à fuites
- 2. Masque naso-buccal à fuite
- 3. Masque narinaire
- 4. Masque naso-buccal sans fuites

Les circuits de ventilation

Un message à retenir

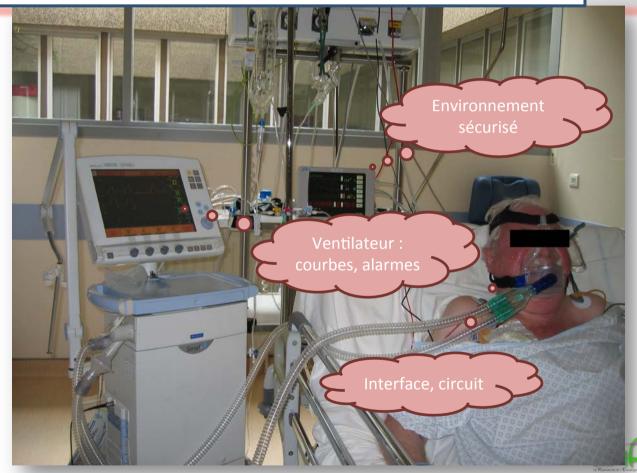
VNI avec circuit unique sans fuite
= masque à fuite

VNI avec double circuit ou circuit à valve

= masque sans fuite



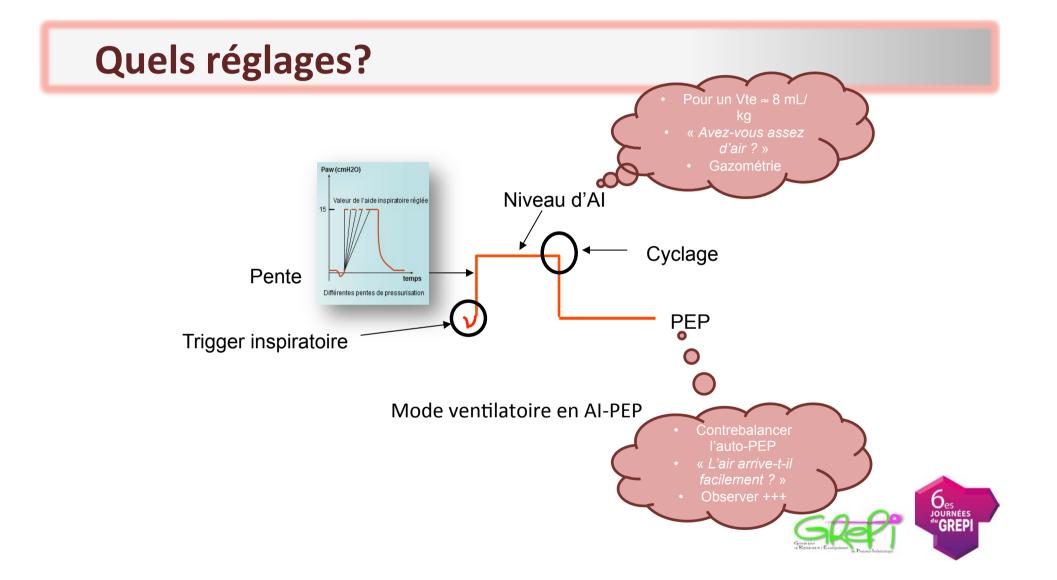
- Savoir s'adapter au patient
- Parfois garder l'interface qu'il connait même si fuites


Un autre message

Un masque ne se « greffe » pas sur le visage

- Il se pose...
- Il faut savoir tolérer <u>quelques</u> fuites

Compromis entre tolérance et efficacité



Quel mode ventilatoire?

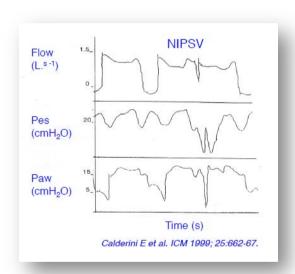
- Le plus souvent : mode en P
- Semble apporter le meilleur confort et la meilleure adaptation au ventilateur
- Inconvénient :
 - Moindre VT en cas d'↑ des résistances
 - Problème de synchronisation en cas de fuites

Parfois mode contrôlé : VAC ou PAC

À 30 minutes, la gazométrie

- pH = 7,27
- $PaCO_2 = 68 \text{ mmHg}$
- $PaO_2 = 75 \text{ mmHg}$
- $SaO_2 = 91\%$

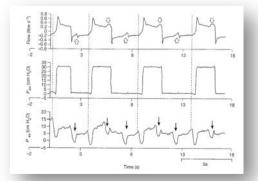
- Vous êtes content,
 vous continuez pareil
- 2. Vous baissez la FiO₂
- 3. Vous augmentez l'Al
- 4. Vous augmentez la PEP


Vous entendez des fuites en entrant dans la chambre et le patient désature

- Vous le réveillez : moins de fuites, il sature mieux
- Vous augmentez la FiO₂
- Vous serrez le masque plus fort
- Vous changez l'interface

Élément clé : synchronisme entre patient et ventilateur

- 1^{er} élément à surveiller : les fuites...
- Modules VNI sur les respirateurs de réanimation
- Savoir les tolérer si synchronie correcte
- Savoir repérer l'asynchronie :
 - FR patient / ventilateur
 - « lutte » contre le ventilateur
 - Regarder les courbes du respirateur!



Les objectifs de la VNI

D'abord la clinique!

- Amélioration des signes cliniques
 - Diminution des signes d'IRA
 - Amélioration de l'état de conscience
- Amélioration de la SpO₂
 - Sous réserve de la quantité d'oxygène
- Le synchronisme entre patient et ventilateur
 - D'abord clinique!
 - Les courbes
 - Les fuites : facteur essentiel d'échec

- Objectif Vte?
 - En fonction du ventilateur
 - Attention aux fuites
 - En moyenne : Vte ≈ 6 9 mL/kg
- Gazométrie : objectif essentiel !
 - Amélioration du pH et diminution de la PaCO₂
 - Rapide : en moyenne 30 à 45 minutes après

Le patient

Expliquer, rassurer, traiter encombrement, spasticité...

Masque NB en 1ère intention Position ½ assise, à jeun jusqu'à amélioration franche

Le ventilateur

VSAI – PEP en 1ère intention Module VNI Réglages initiaux

- Al 8 10 cmH₂O († 2 en
 2)
- PEP 4 7 cmH₂O († 1 en
 1)
- Pente 0,1 0,25s
- Tg inspi sensible
- Tg expi 40 50% et Timax
- Humidification
- FiO₂ pour SpO₂ 88 92%

Objectifs
FR ≤ 25/mn
VTe 7 – 9mL/kg
↓ Fuites et
asynchronies

La surveillance

Ventilatoire

Clinique

Dyspnée, FR, SpO₂, courbes, GDS H1 et H2 +++

GDS H1 et H2 +++

PA, FC, confort, tolérance, fuites, complications (cutanées...), conscience

Adaptation des réglages : GDS 1h après

La poursuite de la VNI

• Continue ou discontinue?

• Savoir arrêter : quand besoins < 6 h par jour

Pour conclure

- EABPCO hypercapnique : indication formelle de VNI
- EN ASSOCIATION avec les autres traitements
 - Aérosols
 - Kinésithérapie
 - Antibiotiques

