

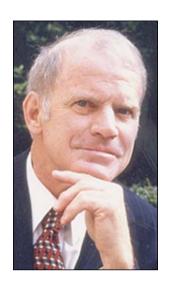
Place de la biologie moléculaire dans le diagnostic de la tuberculose

Pr Nicolas Veziris

CNR des Mycobactéries, Département de Bactériologie,

Hôpitaux Universitaires de l'Est Parisien, APHP

CiMi, INSERM, Sorbonne Université


Conflits d'intérêts

- Janssen
- Otsuka
- Becton Dickinson

Diagnostic de la tuberculose maladie

La PCR

- Réaction de polymérisation en chaine
- PCR mise au point en 1983 par Karry Mullis

- L'amplification génique a pour but d'augmenter le nombre de copies d'un segment cible d'acide nucléique de manière à permettre sa détection
- Permet en théorie de détecter une molécule d'ADN
- Grand espoir pour le diagnostic de la tuberculose à partir des prélèvements

Performances de l'amplification génique dans le diagnostic bactériologique de la tuberculose

Tuberculose	Sensibilité	Spécificité	Prévalence	VPP	VPN
M+	98%	98%	85%	98%	90%
M-	72%	96%	5% ^a	?	?
			2% b	?	?
Extra- respiratoire (M-)	30%	98%	0,5%	?	?

a : pneumologie, SMIT, b : autres services

Performances de l'amplification génique dans le diagnostic bactériologique de la tuberculose BAAR -

Que faire devant ce constat?

Revue des Maladies Respiratoires 2004!

Nouveaux outils de diagnostic de la tuberculose :

la révolution n'est pas achevée

	,	(//-/
PCR -	1,4 (5x0.28)	91,2 (95x0.96)

PCR: évolution des performances

Référence	Type d' étude	Technologie	Sensibilité parmi M-respiratoires
Sarmiento, JCM 2003	Méta-analyse	Plusieurs	72%

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 9, 2010

VOL. 363 NO. 11

Rapid Molecular Detection of Tuberculosis and Rifampin Resistance

Catharina C. Boehme, M.D., Pamela Nabeta, M.D., Doris Hillemann, Ph.D., Mark P. Nicol, Ph.D., Shubhada Shenai, Ph.D., Fiorella Krapp, M.D., Jenny Allen, B.Tech., Rasim Tahirli, M.D., Robert Blakemore, B.S., Roxana Rustomjee, M.D., Ph.D., Ana Milovic, M.S., Martin Jones, Ph.D., Sean M. O'Brien, Ph.D., David H. Persing, M.D., Ph.D., Sabine Ruesch-Gerdes, M.D., Eduardo Gotuzzo, M.D., Camilla Rodrigues, M.D., David Alland, M.D., and Mark D. Perkins, M.D.

« At sites performing alternatives nucleic acid-amplification testing, the sensitivity of the MTB/RIF test performed diectly on sputum was higher than that of Amplicor and similar to that of ProbeTec »

PCR: évolution des performances

Référence	Type d' étude	Technologie	Sensibilité parmi M- respiratoires
Sarmiento, JCM 2003	Méta-analyse	Plusieurs	72%
Boehme, NEJM 2010	Etude prospective	Xpert MTB/RIF	72%
Steingart, Cochrane 2014	Méta-analyse	Xpert MTB/RIF	67%

Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study

Susan E Dorman*, Samuel G Schumacher*, David Alland, Pamela Nabeta, Derek T Armstrong, Bonnie King, Sandra L Hall, Soumitesh Chakravorty, Daniela M Cirillo, Nestani Tukvadze, Nino Bablishvili, Wendy Stevens, Lesley Scott, Camilla Rodrigues, Mubin I Kazi, Moses Joloba, Lydia Nakiyingi, Mark P Nicol, Yonas Ghebrekristos, Irene Anyango, Wilfred Murithi, Reynaldo Dietze, Renata Lyrio Peres, Alena Skrahina, Vera Auchynka, Kamal Kishore Chopra, Mahmud Hanif, Xin Liu, Xing Yuan, Catharina C Boehme, Jerrold J Ellner, Claudia M Denkinger, on behalf of the study team†

« For tuberculosis case detection, sensitivity of Xpert Ultra was superior to that of Xpert in patients with paucibacillary disease »

PCR: évolution des performances

Référence	Type d' étude	Technologie	Sensibilité parmi M-respiratoires
Sarmiento, JCM 2003	Méta-analyse	Plusieurs	72%
Boehme, NEJM 2010	Etude prospective	Xpert MTB/RIF	72%
Steingart, Cochrane 2014	Méta-analyse	Xpert MTB/RIF	67%
Dorman, LID 2018	Etude prospective	Xpert Ultra	63%
		Xpert MTB/RIF	46%

Attention aux effets d'annonce!

Pas d'amélioration de la sensibilité en 15 ans

Sensibilité: 89% (85% - 92%)

Spécificité: 99% (98% - 99%)

	TB active	Pas malade	
Xpert +	89	1	VPP = 89/(89+1) = 99%
Xpert -	11	99	VPN = 99/(99+11) = 90%

France

Incidence: 7,7 / 100 000

0,01%

	TB active	Pas malade	
	0,01	99,99	
Xpert +	0,0089 (0,01 x 89%)	0,99 (99,99 x 1%)	VPP = 0,9%
Xpert -	0,0011 (0,01 x 11%)	98,99 (99,99 x 99%)	VPN = 99%

Géorgie

Incidence: 92 / 100 000

	0	,	1	%)

	TB active	Pas malade	
	0,1	99,1	
Xpert +	0,089 (0,1 x 89%)	0,999 (99,9 x 1%)	V
Xpert -	0,011 (0,1 x 11%)	98,9 (99,9 x 99%)	V

$$VPP = 8,2\%$$

Lesotho

Incidence: 724 / 100 000

	TB active	Pas malade
	1	99
Xpert +	0,89 (1 x 89%)	0,99 (99 x 1%)
Xpert -	0,11 (1 x 11%)	98,01 (99 x 99%)

1%

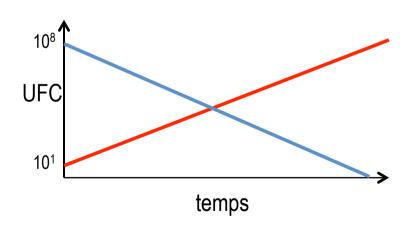
France, patient symptomatique VIH+ et SDF

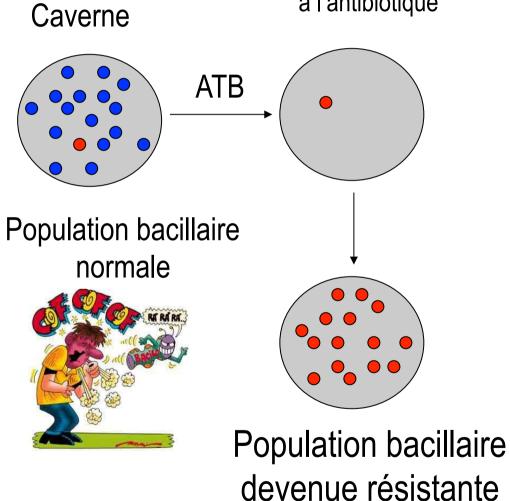
Incidence: 7,7 / 100 000 0,01%

HIV+ et SDF (RR 300), toux > 2 semaines (RR 4)

	TB active	Pas malade	
	0,01*300*4 = 12	88	
Xpert +	10,68 (12 x 89%)	0,88 (88 x 1%)	VI
Xpert -	1,32 (12 x 11%)	87,12 (88 x 99%)	VI

Diagnostic de la tuberculose maladie : Conclusion


 Diagnostic génotypique à intégrer dans une stratégie diagnostique globale (pas de PCR « pêche à la ligne »)


Diagnostic de la résistance

Bases microbiologiques : sélection de mutants résistants

Antibiotique	Concentration	Fréquence de mutants
pyrazinamide	100mg/L	10-5
isoniazide	0,2mg/L	10-6
streptomycine	2mg/L	10-6
rifampicine	1mg/L	10-8
bedaquiline	0,5mg/L	10-8
linézolide	8mg/L	10-9

- Bacille sensible
- Bacille résistant à l'antibiotique

A long time ago in a galaxy far, far away....

Revue de Tuberculose et de Pneumologie. T. 27, 1963, n° 2-3 (pp. 217-272).

MESURE DE LA SENSIBILITÉ DU BACILLE TUBERCULEUX
AUX DROGUES ANTIBACILLAIRES
PAR LA MÉTHODE DES PROPORTIONS.

MÉTHODOLOGIE, CRITÈRES DE RÉSISTANCE, RÉSULTATS, INTERPRÉTATION

par

G. CANETTI, N. RIST et J. GROSSET (Institut Pasteur, Paris).

Référence du diagnostic phénotypique de la résistance Validée chez patients naïfs de traitement ou en échec Adaptée aux milieux liquides dans les années 80

Du phénotype au génotype

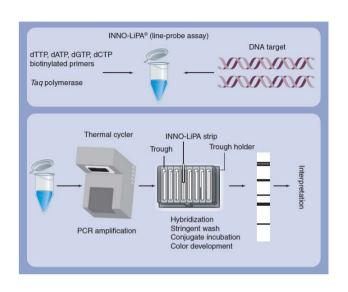
Phénotypiques

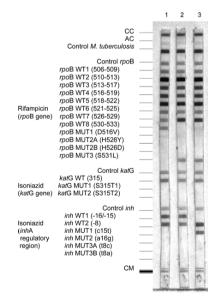
LIMITE : lenteur de croissance de M. tuberculosis

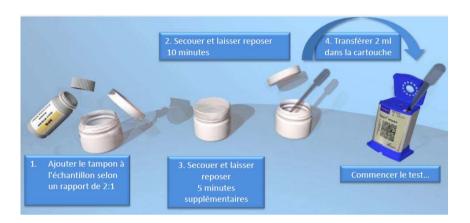
⇒ Intérêt des tests **génotypiques** études des gènes codant des protéines impliquées dans la résistance

Diagnostic génotypique : le début

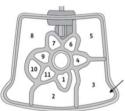
Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis


AMALIO TELENTI PAUL IMBODEN FRANCINE MARCHESI
DOUGLAS LOWRIE STEWART COLE M. JOSEPH COLSTON
LUKAS MATTER KURT SCHOPFER THOMAS BODMER


Lancet 1993; 341: 647-50.


- 122 souches clinique *M. tuberculosis*
- Amplification/séquençage rpoB
- Pas de mutation dans les 56 souches sensibles (séquence identique H37Rv)
- Mutations *rpoB* dans 64/66 souches résistantes

Première démonstration de la possibilité d'un diagnostic génotypique Bonne prédiction de la résistance (64/64 mutés sont résistants = 100%) Prédiction imparfaite de la sensibilité (56/58 non mutées sont sensibles = 97%)


MTBDR, Xpert MTB/RIF

Gènes étudiés

		Gène étudié	Code pour	
Difompioino	MTBDRplus	rno D		
Rifampicine	Xpert MTB/RIF	rpoB	ARN polymerase	
Isoniazide	MTBDRplus	katG 315 Région régulatrice inhA	Catalase Synthèse acides mycoliques	
Fluoroquinolones Amikacine	MTBDRsI	gyrA	ADN gyrase	
Kanamycine		rrs	ARN	
Capréomycine				
Ethambutol		embB 306	Synthèse arabinogalactane	

Performances: méta-analyses

			sensibilité	spécificité		
Rifampio	Difompioino	MTBDRplus	98%	99%		
	Riiampicine	Xpert MTB/RIF	94%	98%		
	Isoniazide	MTBDRplus	84%	99%		
	Fluoroquinolones		87%	97%		
	Amikacine		83%	99%		
	Kanamycine	MTBDRs/	44%	99%		
	Capréomycine		82%	97%	Steingart 201 Feng 2013	
	Ethambutol		68%	80%	Ling 2008	

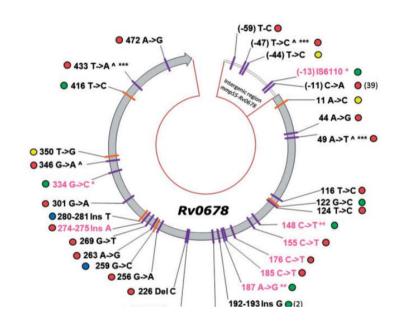
Performances dépendent de connaissance mécanismes de résistance

- médiocres pour kanamycine et éthambutol
- bonnes pour isoniazide, fluoroquinolones, amikacine, capréomycine
- excellentes pour rifampicine⇒recommandé pour toute nouveau cas de TB pour dépistage de la multirésistance (90% des RIF-R sont MDR) : Recommandation HCSP 2015

Un test avec mutation *rpoB* est-il toujours prédictif de résistance à la rifampicine?

Si sensiblité = 100% pour détection de résistance à la rifampicine et specificité de 98%, alors quelle est la VPP d'un test détectant une mutation?

		France		
		Avec ATCD	Sans	
Prévalence de la résistance	30%	9%	2%	
N souches R pour 1000 patients	300	90	20	
N faux positifs pour 1000 tests	20	20	20	
(Sp=98%)				
VPP	94%	82%	50%	
			<u> </u>	

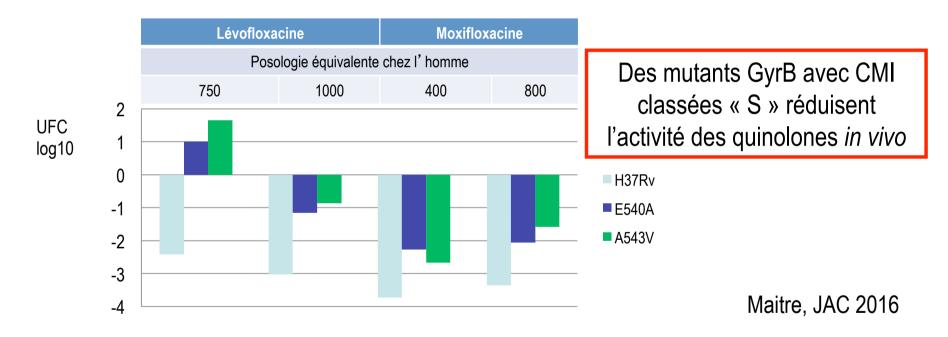

Bon test de dépistage de la multirésistance Valeur prédictive dépend de prévalence résistance En cas de faible probabilité, contrôler le test

Mutation ≠ Résistance

- Bernard, AAC 2015
 - Etude prospective des mutations *gyrA* et *gyrB* impliquées ou pas dans la résistance aux fluoroquinolones chez *M. tuberculosis*
 - 605 souches reçues au CNR entre 2007 et 2012
 - Mutations *gyrA* : 78% associées à résistance
 - Mutations gyrB : 36% associées à résistance

Toutes les mutations sont-elles responsables de résistance?

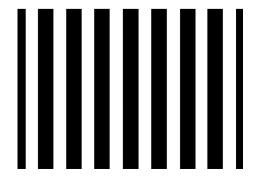
- 6% des souches MDR mutées Rv0678
- CMIs bédaquiline MICs
 - hautes(> 0.24 mg/L, n = 8)
 - normales (0.03-0.24 mg/L, n = 11)
 - Basses (< 0.03 mg/L, n = 4)



Villellas, JAC, 2017

Mutation ≠ Résistance

Activité in vivo de fluoroquinolones contre mutants de bas niveaux de résistance


Gén	énotype Phénotype : CMI (μg/ml)			DRUG	STANDARDIZED	DST CRITICAL CONCENTRATIONS (μg/ml)				
GyrA	GyrB	lévofloxacine	moxifloxacine	« Officiellement »		DST METHOD AVAILABLE	Löwenstein- Jensen ^b	Middlebrook 7H10 ^b	Middlebrook 7H11 ^b	MGIT960
WT	WT	≤ 0,25	≤ 0,25	sensibles	Ofloxacin ^r	Solid, liquid	4.0	2.0	2.0	2.0
WT	E540A	0,5	0,5		Levofloxacin	Solid, liquid	1250 2002	1.0	3.53 3.03	1.5
WT	A543V	1	0,5		Moxifloxacin ^g Gatifloxacin ^h	Solid, liquid Solid	127	0.5/2.0 1.0	708	0.5/2.0



Un exemple où le diagnostic génotypique est supérieure au diagnostic phénotypique

Diagnostic des résistances: Conclusion

- Les méthodes génotypique accélèrent le diagnostic des résistance
- Absence de mutation n'est pas synonyme de sensibilité → tous les mécanismes de résistance ne sont pas connus
- Mutation n'est pas synonyme de résistance
 - → toutes les mutations ne confèrent pas la résistance
 - → variabilité des niveaux de résistance en fonction des mutations

The NEW ENGLAND JOURNAL of MEDICINE

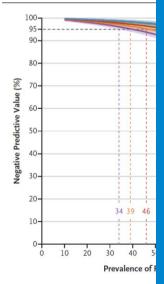
ESTABLISHED IN 181

OCTOBER 11, 201

VOL. 379 NO.

Prediction of Susceptibility to First-Line Tuberculosis Drugs

by


The CRyPTIC Con

10 209 M. tuk

Détection (%)

R

S

Attention aux effets d'annonce!

10 209 génomes

7516 antibiogrammes complets

5865 génomes interprétables

5250 concordants avec l'antibiogramme=70% des antibiogrammes complets= 51% des génomes

Preuve de concept mais pas de faisabilité en vie réelle

bilité y 'évalence

Conclusion générale

- Le diagnostic génotypique accélère le diagnostic de la tuberculose
 - Bien en connaitre les limites pour une bonne utilisation

Demain, séquençage complet du génome en routine?