

Infections des pathologies pulmonaires chroniques

Les nouveautés de l'année Guillaume Mahay CHU De Rouen

Liens d'intérêts

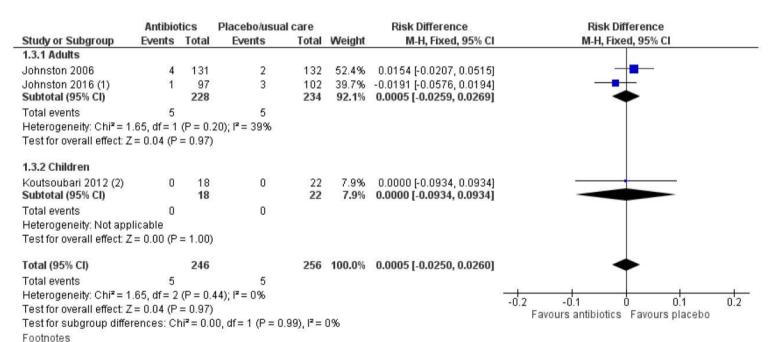
- Investigateur :
 - Astra-Zeneca
- Consultant, Bord:
 - Novartis, Astra-Zeneca
- Symposia:
 - ALK, Novartis, Chiesi, GSK, Astra-Zeneca, TEVA
- Crédit de recherche:
 - ADIR

Normansell et al. Cochrane Database of Systematic Reviews 2018

Cochrane Database of Systematic Reviews

Antibiotics for exacerbations of asthma (Review)

Normansell R, Sayer B, Waterson S, Dennett EJ, Del Forno M, Dunleavy A



- Etudes comparant antibiotiques versus placébo dans exacerbations d'asthme
- Chez l'adulte et l'enfant
- Tout antibiotique, toute durée, toute dose
- 6 études, 681 patients

Figure 1. Forest plot of comparison: I Antibiotics versus placebo/usual care, outcome: 1.3 Serious adverse events.

(1) Total N unclear, assumed total randomised

(2) Defined as no child needing hospitatilisation

Yoshii et al. BMC Pulmonary Medicine

RESEARCH ARTICLE

Open Access

Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma

Yutaka Yoshii^{1*}, Kenichiro Shimizu¹, Miyuki Morozumi², Naoko Chiba², Kimiko Ubukata², Hironori Uruga³, Shigeo Hanada³, Hiroshi Wakui¹, Shunsuke Minagawa¹, Hiromichi Hara¹, Takanori Numata¹, Keisuke Saito⁴, Jun Araya¹, Katsutoshi Nakayama¹, Kazuma Kishi³ and Kazuyoshi Kuwano¹

- Etude japonaise multicentrique
- Patients de 20 ans ou plus se présentant aux urgences pour exacerbation d'asthme
- De aout 2012 à mars 2014
- Réalisation d'une PCR multiplex sur Écouvillon Nasopharyngé et Expectoration
- Comparaison avec Cultures bactériennes et sérologies
- 64 patients inclus

Pathogen	Total	Real-time PCR			Conventional	p-Value ^a
		NPS	Sputum	Total	methods	
Any pathogen detected, n (%)	50 (78.1)	32 (50.0)	41 (64.1)	49 (76.6)	14 (21.9)	< 0.001
Single pathogen	39 (60.9)	28 (43.8)	36 (56.3)	39 (60.9)	13 (20.3)	< 0.001
Mixed pathogens	11 (17.2)	4 (6.3)	5 (7.8)	10 (15.6)	1 (1.6)	0.008
Viral pathogens, n (%)	28 (43.8)	25 (39.1)	17 (26.6)	28 (43.8)	7 (10.9)	< 0.001
Influenza virus	9 (14.1)	8 (12.5)	4 (6.3)	9 (14.1)	7 (10.9)	0.480
Influenza virus A	6 (9.4)	6 (9.4)	2 (3.1)	6 (9.4)	5 (7.8)	1.000
Influenza virus B	3 (4.7)	2 (3.1)	2 (3.1)	3 (4.7)	2 (3.1)	1.000
Rhinovirus	10 (15.6)	9 (14.1)	7 (10.9)	10 (15.6)	NA	520
Respiratory syncytial virus	4 (6.3)	3 (4.7)	3 (4.7)	4 (6.3)	NA	-
Subgroup A	3 (4.7)	2 (3.1)	2 (3.1)	3 (4.7)	NA	-
Subgroup B	1 (1.6)	1 (1.6)	1 (1.6)	1 (1.6)	NA	-
Parainfluenzae virus	5 (7.8)	5 (7.8)	3 (4.7)	5 (7.8)	NA	=
Subtype 1	3 (4.7)	3 (4.7)	1 (1.6)	3 (4.7)	NA	-
Subtype 3	2 (3.1)	2 (3.1)	2 (3.1)	2 (3.1)	NA	-
Bacterial pathogens, n (%)	30 (46.9)	10 (15.6)	27 (42.2)	29 (45.3)	8 (12.5)	< 0.001
Haemophilus influenzae	17 (26.6)	4 (6.3)	17 (26.6)	17 (26.6)	2 (3.1)	< 0.001
Streptococcus pneumoniae	6 (9.4)	3 (4.7)	6 (9.4)	6 (9.4)	3 (4.7)	0.248
Streptococcus pyogenes	2 (3.1)	2 (3.1)	2 (3.1)	2 (3.1)	1 (1.6)	1.000
Mycoplasma pneumoniae	5 (7.8)	1 (1.6)	4 (6.3)	5 (7.8)	0	0.074
Chlamydophila pneumoniae	1 (1.6)	1 (1.6)	0	1 (1.6)	NA	=
Moraxella catarrhalis	2 (3.1)	ND	ND	ND	2 (3.1)	5=
No pathogen detected	14 (21.9)	32 (50.0)	23 (35.9)	15 (23.4)	50 (78.1)	-

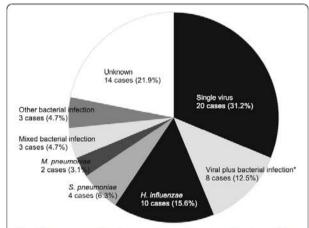


Fig. 1 Percentages of pathogens detected by comprehensive real-time polymerase chain reaction and conventional methods. *Influenza virus + H. influenzae, 3 cases (4.7%); rhinovirus + H. influenzae, 2 cases (3.1%); respiratory syncytial virus + H. influenzae, 1 case (1.6%); influenza virus + M. pneumoniae, 1 case (1.6%); influenza virus + H. influenzae + S. pneumoniae, 1 case (1.6%)

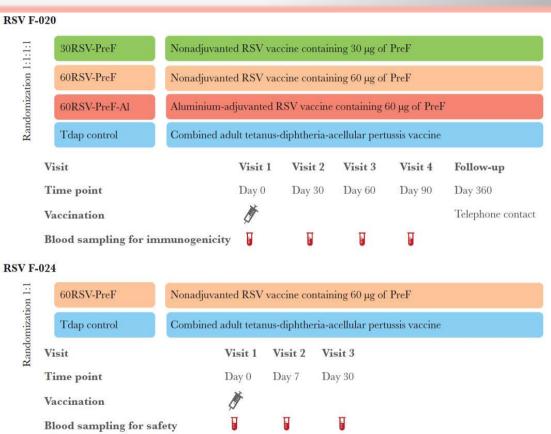
Yoshii et al. BMC Pulmonary Medicine

Beran et al. The Journal of Infectious Diseases

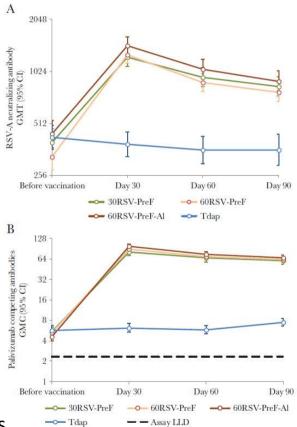
The Journal of Infectious Diseases

MAJOR ARTICLE

Safety and Immunogenicity of 3 Formulations of an Investigational Respiratory Syncytial Virus Vaccine in Nonpregnant Women: Results From 2 Phase 2 Trials


Jiři Beran,¹ Jason D. Lickliter,² Tino F. Schwarz,³ Casey Johnson,⁴ Laurence Chu,⁵ Joseph B. Domachowske,⁶ Pierre Van Damme,⁹ Kanchanamala Withanage,⁹ Laurence A. Fissette,¹⁰ Marie-Pierre David,¹⁰ Koen Maleux,¹¹ Alexander C. Schmidt,⁷ Marta Picciolato,¹² and Ilse Dieussaert⁸

¹Vaccination and Travel Medicine Centre, Hradec Králové, Czech Republic; ²Nucleus Network, Melbourne, Australia; ³Klinikum Würzburg Mitte, Standort Juliusspital, Würzburg, Germany; ⁴Johnson County Clinic Trials, Lenexa, Kansas; ⁵Benchmark Research, Austin, Texas; ⁶Department of Pediatrics, SUNY Upstate Medical Center, Syracuse, New York; ⁷Clinical Research and Development and ⁸Research and Development, GSK, Rockville, Maryland, USA; ⁹Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, and ¹⁰Biostatistics, Biostat, and Stat Programming, ¹¹CLS/CIAM, and ¹²Clinical Research and Development, GSK, Rixensart, Belgium


- 2 études de phases 2
- Randomisées contre DTP
- Protéine F de surface recombinante (cible du palivizumab)
- 500 Femmes de 18 à 45 ans

Beran et al. The Journal of Infectious Diseases

- Bonne tolérance
- Environ 75% des patientes avec une immunité déjà présente

Mitchell et al. BMC Pulmonary Medicine

RESEARCH ARTICLE

Open Access

Viruses in bronchiectasis: a pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations

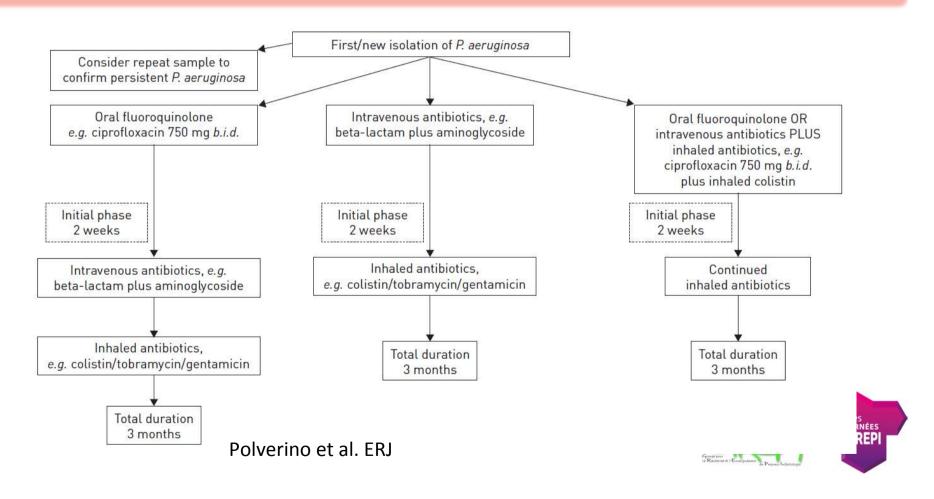
Alicia B. Mitchell^{1,2,4*}, Bassel Mourad^{1,4}, Lachlan Buddle², Matthew J. Peters^{2,3}, Brian G. G. Oliver^{1,4,5,6} and Lucy C. Morgan^{2,3}

- Une étude rétrospective de juin 2011 à juillet 2016 monocentrique de 47 patients
 - PCR multiplex virus lors de 23 hospitalisations (sur 83 hospitalisations) pour une exacerbation
- 2 cohortes chez des patients stables avec PCR multiplex virus
 - Prélèvements d'expectoration et sur le filtre du spiromètre
 - Une pendant l'été
 - Une pendant l'hiver

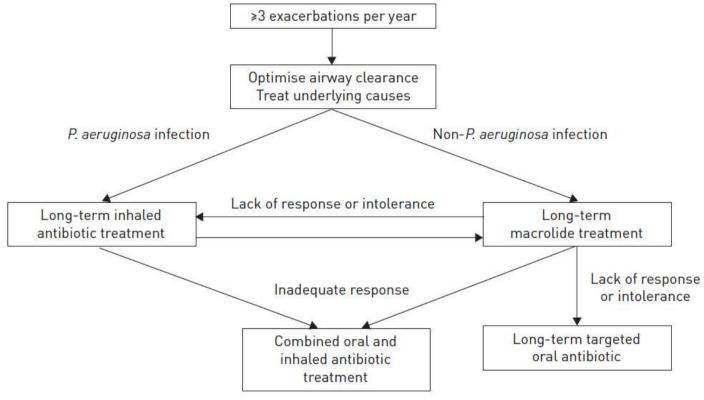
- Exacerbations
 - PCR positive chez 9 patients sur 23 (39%)
 - 3 Grippes A
 - 6 Rhinovirus

Patient 1	Winter			
	Filter positive	Sputum positive		
1	Flu A	RV, RSV, Flu A + B		
2	Flu B	RV, RSV, Flu A + B		
3	Flu B	RV, RSV, Flu $A + B$		
4	Flu B	RV, RSV, Flu A + B		
5	Flu A	RV, RSV + Flu A		
6		RV + RSV		
7		Flu A		
8	RV + Flu A	RV + Flu A		
9	Flu A + B	RV, RSV, Flu A + B		
10	Flu A + B	RV, RSV, Flu A + B		
11	Flu A	RV, RSV, Flu A + B		
12				
Patient	Summer			
	Filter positive	Sputum positive		
13				
14	FluA	FluA		
15				
16				
17				
18	FluA	FluA		
19		FluA		
20		FluA		
21				
22				
23				
24				
25				
26	FluA	FluA		
27				

Polverino et al. ERJ


European Respiratory Society guidelines for the management of adult bronchiectasis

Eva Polverino¹, Pieter C. Goeminne^{2,3}, Melissa J. McDonnell^{4,5,6}, Stefano Aliberti ^{6,7}, Sara E. Marshall⁸, Michael R. Loebinger⁹, Marlene Murris¹⁰, Rafael Cantón¹¹, Antoni Torres¹², Katerina Dimakou¹³, Anthony De Soyza^{14,15}, Adam T. Hill¹⁶, Charles S. Haworth¹⁷, Montserrat Vendrell¹⁸, Felix C. Ringshausen¹⁹, Dragan Subotic²⁰, Robert Wilson⁹, Jordi Vilaró²¹, Bjorn Stallberg²², Tobias Welte¹⁹, Gernot Rohde²³, Francesco Blasi⁷, Stuart Elborn^{9,24}, Marta Almagro²⁵, Alan Timothy²⁵, Thomas Ruddy²⁵, Thomy Tonia²⁶, David Rigau²⁷ and James D. Chalmers²⁸

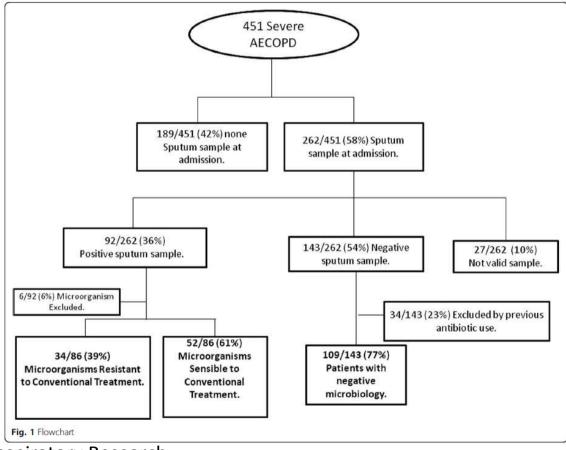


Traitement de la primo-infection à pseudomonas aeroginosa

Antibiothérapie au long cours

Estirado et al. Respiratory Research

RESEARCH Open Access


Microorganisms resistant to conventional antimicrobials in acute exacerbations of chronic obstructive pulmonary disease

Cristina Estirado^{1†}, Adrian Ceccato^{2†}, Monica Guerrero², Arturo Huerta², Catia Cilloniz², Olivia Vilaró², Albert Gabarrús², Joaquím Gea¹, Ernesto Crisafulli³, Nestor Soler² and Antoni Torres^{2,4*}

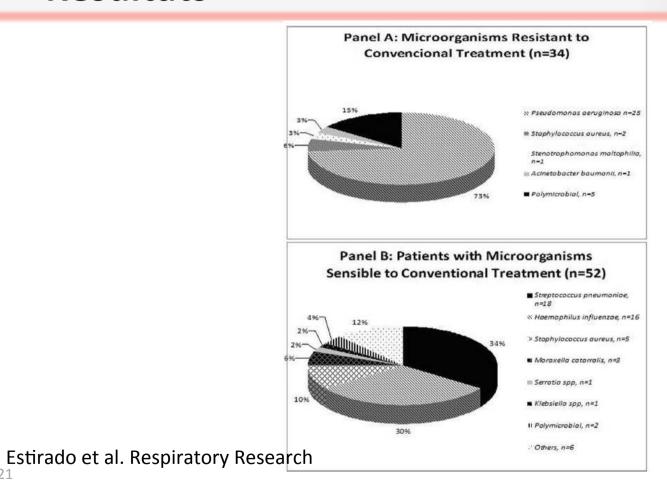

- Etude observationnelle Monocentrique (Espagne) de janvier 2009 à décembre 2015
- Patients hospitalisés pour une exacerbation de BPCO
- Réalisation d'un ECBC avant antibiothérapie
- Classement en 3 catégories :
 - Prélèvement négatif
 - Prélèvement positif avec germe sensible à l'Amoxicilline,
 Augmentin, macrolide ou tétracycline
 - Prélèvement positif avec un germe résistant

Table 2 Multinomial logistic regression model for microorganisms resistant to conventional treatment or microorganisms sensitive to conventional treatment relative to negative microbiology

Variable	Patients with microorganisms resistant to conventional treatment			Patients with microorganisms sensitive to conventional treatment		
	OR	95% CI	P value	OR	95% CI	P value
Non-current smoker	4.19	1.29 to 13.67	0.017	0.78	0.38 to 1.59	0.49
≥2 AECOPD or 1 admission by AECOPD in the previous year	4.13	1.52 to 11.17	0.005	1.75	0.76 to 3.99	0.19
BODEx index						
1st quartile: 0-2	1	S-	8-	1		:=:
2nd quartile: 3–4	2.32	0.67 to 7.98	0.18	0.62	0.21 to 1.88	0.40
3rd quartile: 5–6	1.85	0.58 to 5.90	0.30	1.12	0.44 to 2.88	0.82
4th quartile: 7–9	0.48	0.10 to 2.33	0.37	0.14	0.03 to 0.70	0.016
C-reactive protein < 5 mg/dL at admission	3.58	1.41 to 9.07	0.007	1.14	0.57 to 2.27	0.72

Merci pour votre attention

