

The University of Manchester Manchester Cancer Research Centre

LES CBNPC LOCALEMENT AVANCÉS OU INOPÉRABLES Vu par le radiothérapeute

Corinne Faivre-Finn FRCR, MD, PhD The Christie, University of Manchester

Cours du Golf - 8 Octobre 2019

Conflicts of interests

- Research grants- AZ, Elekta, MSD
- Symposium AZ
- Advisory boards AZ, Pfeizer

Founded in 1892, 'Cancer Pavilion and Home of the Incurables';
renamed 'The Christie Hospital & Holt Radium Institute' in 1901

1901 - use of X-rays for therapy
1905 - use of radium for therapy

1932 - development of the "Manchester Method" of radium treatment

1944 - world's first clinical trial of Stilboestrol
1970 - world's first clinical use of Tamoxifen

1986 - world's first use of cultured bone marrow for leukaemia treatment

1991 - world's first single harvest blood stem-cell transplant
1992 - world's first MLC developed with Philips

2002- world's first clinical use of image guided radiotherapy on a linac

2018-first proton facility in the UK

Concept of the Clinical Oncologist

Aim of radiotherapy in stage 3 - Cure

Advanced RT=better local control=improved OS

CHART

Saunders et al. Lancet 2010

- 60 Gy/30# OD vs. 54 Gy/36# TDS
- HR death 0.76 (p=0.004, 95% CI 0.63–0.92)
- HR local progression 0.77 (p=0.027, 95% 0.61–0.97)

NSCLCCG Meta-analysis

(6 trials, 1205 patients)

Auperin et al. JCO 2010

- HR death 0.83 (p=0.04); absolute benefit survival 4.5% at 5 years
- HR loco-regional progression 0.77; 95% CI 0.62 to 0.95; p= 0.01); absolute benefit 6% at 3 years

RTOG Meta-analysis

Machtay et al. JTO 2012

(7 trials, 1390 patients)

 Improved local control correlates with improved overall survival (p<0.0001)

Clinical Case

71 yr old female Presented with SOB PMH –IHD, HBP WHO PS=1, MRC RS 2

PFTs - FEV1 80% predicted KCO 105% predicted

CT - RUL tumour & enlarged 4R, 7 lymph nodes T3 N2 M0

EBUS - Station 4R adenocarcinoma

PET-CT - FDG avid right supraclavicular LN T3 N3 M0

MR Brain - Clear

Is she radically treatable? Can you consider concurrent CTRT? What RT techniques will facilitate conc CTRT?

Stage III NSCLC: What is the clinical challenge?

• Baseline patient factors:

• Performance status, weight loss

• Organ at risk factors:

- Lung function and cardiac function
- Influence of respiratory motion
- Proximity of target to spinal cord, oesophagus, heart

• Tumour factors:

- Histological subtype, genetic/mutational status and intra-tumour heterogeneity
- Disease stage, primary tumour volume and location, extent of nodal involvement

NHS Foundation Trust

What is the optimal RT treatment? Can we treat large volumes with CTRT?

The Evolution of Radiation Therapy

Drive to increase conformal delivery to irregular tumour targets And reduce toxicity

PETCT

NHS Foundation Trust

RTOG 0617: What have we learnt?

	DT		Concurrent Treatment	Consolidation Treatment
C	KITechnique1.3D-CRT2.IMRTZubrod1.02.1PET Staging1.No2.Yes	R A N D	Arm A Concurrent chemotherapy* RT to 60 Gy, 5 x per wk for 6 wks	<u>Arm A</u> Consolidation chemotherapy*
S T R A			Arm B Concurrent chemotherapy* RT to 74 Gy, 5 x per wk for 7.5 wks	<u>Arm B</u> Consolidation chemotherapy*
T I F		M I Z	Arm C Concurrent chemotherapy* and Cetuximab RT to 60 Gy, 5 x per wk for 6 wks	<u>Arm C</u> Consolidation chemotherapy* and Cetuximab
Ŷ	Histology 1.Squamous 2.Non- Squamous	E	Arm D Concurrent chemotherapy* and Cetuximab RT to 74 Gy, 5 x per wk for 7.5 wks	<u>Arm D</u> Consolidation chemotherapy* and Cetuximab

*Carboplatin and paclitaxel 90% patients PET staged 185 centres n=464 high dose vs standard dose; n=544 cetuximab vs no cetuximab

RTOG 0617 How not to do treatment intensification

Figure 2: Kaplan-Meier overall survival curves for radiation dose (A) and the use of cetuximab (B) (A) One-sided log-rank p=0.0042. (B) one-sided log-rank, p=0.2938.

What have we learnt from RTOG0617

- Benchmark for future trials = 60 Gy in 30#
- Heart dose matters

Bradley. Lancet Oncol 2015

Evidence supporting IMRT

Chun. JCO 2016

The Christie

NHS Foundation Trust

Impact of RT on heart and immune system

RTOG 0617 Heart V5, V30→ increased risk of death Bradley. Lancet Oncol 2015

> ↓OS if base of the heart dose > 8.5Gy McWilliam et al Eur J Cancer. 2017

Max to LA and near Min dose to SVC significantly associated with non-cancer death *Stam. Radiother Oncol.* 2017

Bilateral ventricle max dose significantly associated with noncancer death *Wong.Clin Lung Cancer*. 2018

> Dose to LAD, LV and RV significantly associated with CE in patients with IHD Yegya-Raman. *J Thorac Oncol.* 2018

Heart

Impact of heart, lung, and large vessel irradiation on OS *Thor. ASTRO 2018*

↓OS if PA V40Gy >80% Ma et al Radiat Oncol. 2017

↓OS if >2.2% of LA wall received >63Gy LA dose associated with ECG changes *Vivekanandan Int J Radiat Oncol Biol Phys.* 2017

> Fractionated RT SABR

Immune system

Model G3 lymphopenia Consider prophylaxis

Need prospective data to identify sensitive substructures

RTOG 0617: benefit of IMRT

Deck Stacked Against IMRT:

Characteristic	3D-CRT	IMRT	P-value
Stage IIIB	30%	39%	0.056
PTV	427 mL	486 mL	0.005
PTV:lung ratio	0.13	0.15	0.013

Benefits of IMRT: Outcomes

Outcome	OR (95% CI)	P-value
Overall survival	1.01 (0.8, 1.28)	0.95
Progression free survival	1.12 (0.91, 1.39)	0.28
Local control	0.91 (0.67, 1.23)	0.54
Distant metastasis free	0.92 (0.71, 1.19)	0.52

Overall and progression free survival similar in spite of more unfavorable tumors in IMRT group

Benefits of IMRT: Treatment & Toxicity

Outcome	3D-CRT	IMRT	P-value				
Grade 3+ pneumonitis	8%	3.5%	0.0462				
Heart V40	11.4%	6.8%	0.0026				
Full consolidative chemotherapy	29%	37%	0.05				
Esophagitis, weight loss, cardiovascular, neurologic adverse effects similar in IMRT and 3D-CRT							

Multivariate Predictors of Grade 3+ pneumonitis

Co-variate	Comparison	OR (95% CI)	P-value
Technique	3D-CRT vs IMRT	0.44 (0.18, 1.04)	0.0621
Stage	IIIA vs. IIIB	2.35 (1.05, 5.29)	0.0385
Lung V20	Continuous	1.081 (1.02, 1.146)	0.009

Low dose bath bigger with IMRT

Lung V5 - IMRT 62% vs. 3D-CRT 55% (P < 0.0001)

Lung V5 did not predict pneumonitis, P = 0.14, OR 1.02, 95% CI (0.994, 1.04)

MLD did not predict pneumonitis

The Christie

Benefit of IMRT

Impact of IMRT on curative-intent RT 'Big data' analysis of 8855 patients

- 2005-8: Pre IMRT partial access to IMRT (n=2872)
- 2009-12: limited access to IMRT (n= 3344)
- 2013-2014: ~Full access to IMRT 2639

Chan et al. BTOG 2017

What is the optimal systemic treatment with RT?

Clinical Case

71 yr old female Presented with SOB PMH –IHD, HBP WHO PS=1, MRC RS 2 PDL1: <1%

60 Gy in 30 fractions Cisplatin etoposide x 2 cycles GTV 560 cc

> 2 weeks post CTRT Grade 3 Oesophagitis PS2

4 weeks post CTRT Grade 2 oesophagitis PS2

Are you comfortable treating with Durvalumab?

0

The Christie NHS NHS Foundation Trust

PFS AND OS IN THE ITT POPULATION

PFS AND OS BY PRE-SPECIFIED SUBGROUP (ITT)

		Progr	ession free survival (BICF	र)	Over	rall survival	
			No. of events / n	o. of patients (%)		No. of events / n	o. of patients (%)
		HR (95% CI)	Durvalumab	Placebo	HR (95% CI)	Durvalumab	Placebo
	All patients	HH I	214/476 (45.0)	157/237 (66.2)		183/476 (38.4)	116/237 (48.9)
Gav	Male		155/234 (46.4)	111/166 (66.9)	!	141/334 (42.2)	80/166 (48.2)
Sex	Female		59/142 (41.5)	46/71 (64.8)		42/142 (29.6)	36/71 (50.7)
Ave at vandamization	<65 years	⊢●┤	108/261 (41.4)	91/130 (70.0)	i	89/261 (34.1)	58/130 (44.6)
Age at randomization	≥65 years		106/215 (49.3)	66/107 (61.7)	<u>+</u>	94/215 (43.7)	58/107 (54.2)
Ometing status	Smoker	H	197/433 (45.5)	140/216 (64.8)		169/433 (39.0)	103/216 (47.7)
Smoking status	Non-smoker		17/43 (39.5)	17/21 (81.0)	·	14/43 (32.6)	13/21 (61.9)
Diagona atoma	Stage IIIA	⊢●	108/252 (42.9)	82/125 (65.6)		101/252 (40.1)	70/125 (56.0)
Disease stage	Stage IIIB		104/212 (49.1)	72/107 (67.3)		79/212 (37.3)	44/107 (41.1)
Tumar histologia tuma	Squamous	●	117/224 (52.2)	66/102 (64.7)	⊢ ● -	103/224 (46.0)	56/102 (54.9)
rumor histologic type	Non-squamous	⊢ ∎⊣ I	97/252 (38.5)	91/135 (67.4)	⊢_ ● I	80/252 (31.7)	60/135 (44.4)
Prior definitive CT	Cisplatin		115/266 (43.2)	97/129 (67.4)	⊢ ● →	94/266 (35.3)	64/129 (49.6)
-nor deliniuve CT	Carboplatin	⊢ • I	91/199 (45.7)	65/102 (63.7)	⊢_+ +_	84/199 (42.2)	47/102 (46.1)
Post response to	CR	NA*	2/9 (22.2)	4/7 (57.1)	NA*	2/9 (22.2)	3/7 (42.9)
best response to	PR	⊢●⊣	99/232 (42.7)	72/111 (64.9	⊢ ● − 1	83/237 (35.0)	50/112 (44.6)
	SD	⊢●┤│	108/222 (48.6)	77/114 (67.5)	⊢_ ● !	93/223 (41.7)	61/115 (53.0)
	Positive	► • <u>+</u>	17/29 (58.6)	11/14 (78.6)	NA*	10/29 (34.5)	6/14 (42.9)
EGFR status	Negative	⊢●⊣	131/315 (41.6)	112/165 (67.9)	⊢_● !	117/317 (36.9)	80/165 (48.5)
	Unknown	↓ ↓	66/132 (50.0)	34/58 (58.6)	⊢_ ●	56/130 (43.1)	30/58 (51.7)
	≥25%		48/115 (41.7)	31/44 (70.5)	⊢	37/115 (32.2)	23/44 (52.3)
PD-L1 Status	<25%	⊢-●	85/187 (45.5)	68/105 (64.8)	⊢_ •	74/187 (39.6)	41/105 (39.0)
pre-specified)	Unknown		81/174 (46.6)	58/88 (65.9)	i	72/174 (41.4)	52/88 (59.1)
	≥1%		84/212 (39.6)	59/91 (64.8)		70/212 (33.0)	45/91 (49.5)
(nost-hoc)	1-24%		36/97 (37.1)	28/47 (59.6)	⊢	33/97 (34.0)	22/47 (46.8)
	<1%		49/90 (54.4)	40/58 (69.0)		41/90 (45.6)	19/58 (32.8)
	4-	0.25 0.5 1.0 Durvalumab better P	2.0		0.25 0.5 1.0	2.0	

IMPACT OF PRECEDING CHEMOTHERAPY AND RT DOSE

		PFS (BICR)				OS			
	HR (95% C	HR (95% CI) No. of events / no. of patients (%)		HR (95% CI)		No. of events / no. of patients (%)			
		Durvalumab	Placebo			Durvalumab	Placebo		
ITT ^{1,2}	⊢●⊣	214/476 (45.0)	157/237 (66.2)		⊢ ● ⊣ ¦	183/476 (38.4)	116/237 (48.9)		
Induction chemotherapy Yes No		59/123 (48.0) 155/353 (43.9)	49/68 (72.1) 108/169 (63.9)	ŀ	• •	53/123 (43.1) 130/353 (36.8)	34/68 (50.0) 82/169 (48.5)		
Platinum Cisplatin Carboplatin		115/266 (43.2) 91/199 (45.7)	87/129 (67.4) 65/102 (63.7)	F		94/266 (35.3) H 84/199 (42.2)	64/129 (49.6) 47/102 (46.1)		
Taxane Yes No		97/207 (46.9) 117/269 (43.5)	72/112 (64.3) 85/125 (68.0)	۲ ۲		80/207 (38.6) 103/269 (38.3)	51/112 (45.5) 65/125 (52.0)		
Etoposide Yes No		49/117 (41.9) 165/359 (46.0)	34/52 (65.4) 123/185 (66.5)	⊢		43/117 (36.8) 140/359 (39.0)	32/52 (61.5) 84/185 (45.4)		
Vinorelbine Yes No		58/124 (46.8) 156/352 (44.3)	42/59 (71.2) 115/178 (64.6)	F F		H 48/124 (38.7) 135/352 (38.4)	27/59 (45.8) 89/178 (50.0)		
Dose of radiotherapy <60 Gy 60–66 Gy >66 Gy		16/38 (42.1) 187/407 (45.9) 10/30 (33.3)	11/15 (73.3) 130/202 (64.4) 15/19 (78.9)	⊢ _		15/38 (39.5) 160/407 (39.3) –	11/15 (73.3) 96/202 (47.5) –		
	0.25 0.5 1	Ź		0.25 0.5	5 1	Ż			
•	Durvalumab better	Placebo better		Durvalumab bette	r	Placebo better	F		

The Christie NHS Foundation Trust Antonia SJ, et al. N Engl J Med. 2012 Antonia SJ, et al.. N Engl J Med 2018

IMPROVED OUTCOMES IRRESPECTIVE OF TIME FROM RADIATION

Subgroup analyses suggested that durvalumab improved PFS and OS regardless of dose of RT and time from RT to randomization

MY COMMENTS ON PACIFIC

- Is the PACIFIC population representative?
- No data on disease volume, dose to OARs, RT techniques
- Applicability to the sequential setting?
- Uncertainties
 - Large volume
 - Dose to OARs at the limit of tolerance
 - PS2
 - Elderly
 - Optimal duration of IO treatment?
 - Timing IO and RT?
 - Biomarkers?

What RT in combination with IO?

Conventional vs high dose per fraction?

- Preclinical studies suggest increased immunogenic cell death with higher doses
- Circulating lymphocytes highly sensitive to RT (D90 = 0.5 Gy)

Protracted vs. short course?

- Preclinical studies suggest multiple may be better than single
- Clinical abscopal effects mainly observed following 3-5 fractions
- Protracted RT courses may induce more lymphopenia

Small vs. large fields?

- Large RT volumes may cover more lymphoid tissue & induce more lymphopenia
- Immuno-suppressive impact of conventional fields?

Treat all disease?

Pre RT

Post RT

Clinical Case

73 yr old female Presented with SOB PMH –IHD, HBP WHO PS=1, MRC RS 2

PFTs - FEV1 80% predicted KCO 105% predicted

CT - RUL tumour&enlarged 4R, 7 lymph nodes, T3 N2 M0

EBUS - Station 4R EGFR+ adenocarcinoma

PET-CT - FDG avid right supraclavicular LN T3 N3 M0

MR Brain - Clear

EGFR mutation

PFS AND OS BY PRE-SPECIFIED SUBGROUP (ITT)

		Progressio	n free survival (BICF	R)	Over	all survival	
			No. of events / n	o. of patients (%)		No. of events / n	o. of patients (%)
		HR (95% CI)	Durvalumab	Placebo	HR (95% CI)	Durvalumab	Placebo
	All patients	HI I	214/476 (45.0)	157/237 (66.2)		183/476 (38.4)	116/237 (48.9)
Pau	Male		155/234 (46.4)	111/166 (66.9)		141/334 (42.2)	80/166 (48.2)
Sex	Female	⊢ • !	59/142 (41.5)	46/71 (64.8)	⊢_●	42/142 (29.6)	36/71 (50.7)
Age at rendemization	<65 years	⊢●⊣	108/261 (41.4)	91/130 (70.0)	⊢●→┤ .	89/261 (34.1)	58/130 (44.6)
Age at randomization	≥65 years	÷	106/215 (49.3)	66/107 (61.7)	¦	94/215 (43.7)	58/107 (54.2)
Smaking status	Smoker	⊢●┤	197/433 (45.5)	140/216 (64.8)	⊢●-1	169/433 (39.0)	103/216 (47.7)
Smoking status	Non-smoker		17/43 (39.5)	17/21 (81.0)	⊢ → 1 1	14/43 (32.6)	13/21 (61.9)
Diagona atoma	Stage IIIA	⊢●1	108/252 (42.9)	82/125 (65.6)		101/252 (40.1)	70/125 (56.0)
Disease stage	Stage IIIB		104/212 (49.1)	72/107 (67.3)	H	79/212 (37.3)	44/107 (41.1)
Tumor histologia tuna	Squamous	i	117/224 (52.2)	66/102 (64.7)	i	103/224 (46.0)	56/102 (54.9)
rumor histologic type	Non-squamous	⊢∙⊣	97/252 (38.5)	91/135 (67.4)	⊢ ● –	80/252 (31.7)	60/135 (44.4)
Prior definitive CT	Cisplatin	⊢●	115/266 (43.2)	97/129 (67.4)	⊢ ● I	94/266 (35.3)	64/129 (49.6)
Prior delinitive C1	Carboplatin	⊢ • I	91/199 (45.7)	65/102 (63.7)	⊢_+ +-	84/199 (42.2)	47/102 (46.1)
Post response to	CR	NA* I	2/9 (22.2)	4/7 (57.1)	NA*	2/9 (22.2)	3/7 (42.9)
Dest response to	PR	⊢●┤╹	99/232 (42.7)	72/111 (64.9	├_● ┦	83/237 (35.0)	50/112 (44.6)
	SD	⊢●┤╵	108/222 (48.6)	77/114 (67.5)	I	93/223 (41.7)	61/115 (53.0)
	Positive		17/29 (58.6)	11/14 (78.6)	NA*	10/29 (34.5)	6/14 (42.9)
EGFR status	Negative	⊢●→	131/315 (41.6)	112/165 (67.9)	⊢●→ !	117/317 (36.9)	80/165 (48.5)
	Unknown	⊢_● ¦	66/132 (50.0)	34/58 (58.6)	⊢_	56/130 (43.1)	30/58 (51.7)
	≥25%		48/115 (41.7)	31/44 (70.5)	·●	37/115 (32.2)	23/44 (52.3)
PD-L1 status	<25%	⊢-●1	85/187 (45.5)	68/105 (64.8)	┝─╁●─┤	74/187 (39.6)	41/105 (39.0)
(pre-specified)	Unknown	⊢ ● - 1	81/174 (46.6)	58/88 (65.9)	⊢_ ● į	72/174 (41.4)	52/88 (59.1)
PD 14 status	≥1%		84/212 (39.6)	59/91 (64.8)		70/212 (33.0)	45/91 (49.5)
PD-L1 status	1-24%		36/97 (37.1)	28/47 (59.6)	⊢	33/97 (34.0)	22/47 (46.8)
(post-noc)	<1%		49/90 (54.4)	40/58 (69.0)		41/90 (45.6)	19/58 (32.8)
		0.25 0.5 1.0 2	☐ 2.0		0.25 0.5 1.0	2.0	

And what about the role of targeted agents in LA NSCLC?

NHS Foundation Trust

Clinical Case

73 yr old female Presented with SOB PMH –IHD, HBP WHO PS=1, MRC RS 2

Would she benefit from Protons, MRL?

Should Protons be delivered routinely or is it the end of the story? 008 0.0 **RCT photon IMRT vs Passive Scattering protons** (70Gy/35f) 0.0 1.00 MST_{IMPT}= 29.5 month all survival MST_{3D-PSPT}=26.1 month Proton Proton œ ω P=0 2974 0.75 Mean dose: Mean dose: 10 Gv vs. 6 Gv € 16.5 Gy vs. 16.1 Gy 0.50 g ശ P = 0.003 Percent P =0.8 ercent പ്പ Study compared maturing proton RT 72 with sophisticated photon IMRT 7 (2) 0 (0) 1 V5 V10 V20 V30 Liao, ASCO 2016 1.00 1.00 **IMRT: 13%** IMRT: 6.5% (2 Grade 5) 15% **PSPT: 12%** PSPT: 10.5% 5%

Opportunities for strengthening the current workflow with MRL 'See while you treat'

Integration of RT innovations in the multimodality treatment of LA-NSCLC

- Big changes in the field of advanced RT
- Facilitating safer drug-RT combinations
- Challenge evaluate, demonstrate the impact

The Christie

NHS Foundation Trust

