La radiothérapie stéréotaxique dans les stades précoces

C. Massabeau

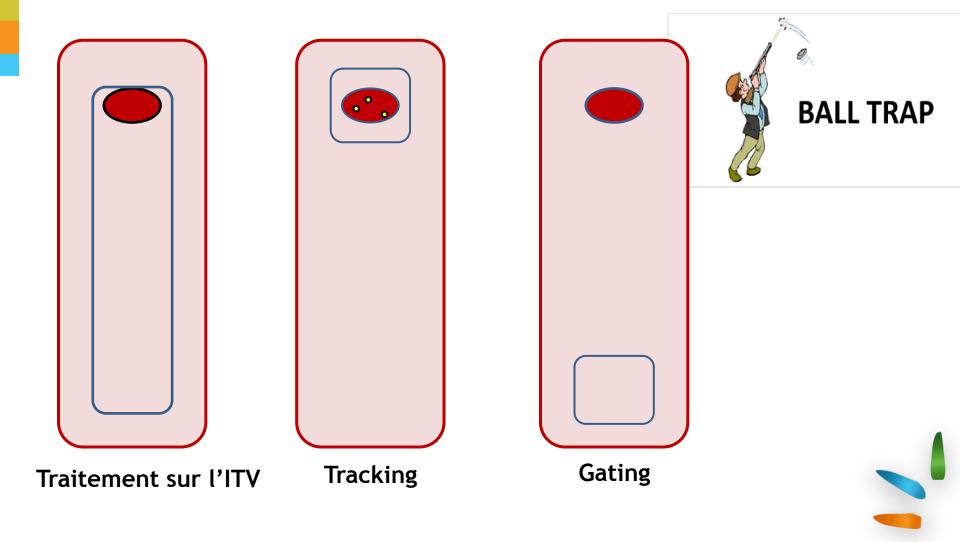
Cours du GOLF 2019

Pour qui ? Pourquoi ? Comment ?

Pour qui: CBNPC inopérables T1-T2aN0M0 (HAS, ESTRO, ASCO, ASTRO)

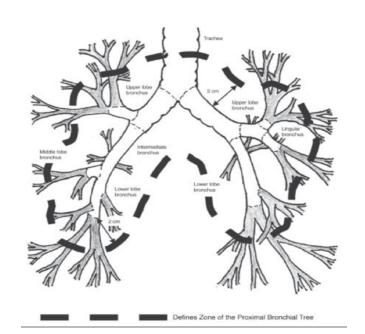
Comment:

Haute précision


Hypofractionnement: Peu de fractions, forte dose par fraction (>8-10 Gy)

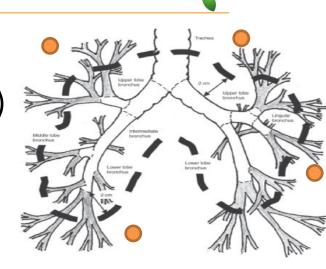
Dose équivalente biologique > 100 Gy Grill JTO 2012)

Le défi : la gestion du mouvement



Au début de la stéréotaxie

Timmerman JCO 2006


- Phase II, T1-2 N0, n=70, 60-66 Gy en 3 fractions
- 14 patients avec toxicités gr. 3 à 5 dont 6 décès
- A 2 ans :
 46% de toxicités sévères
 si T. centrale
 vs 17% si T. périphérique

Tumeurs « périphériques »

 A distance du médiastin et/ou de l'arbre trachéobronchique proximal (>2 cm)

- RTOG 0236, phase II, T1-T2aN0MO, inopérables, n=59
 - 54 Gy en 3 fractions
 - Contrôle local: 93% à 5 ans
 - 38 % de progression rég. et survie à 5 ans de 40%
 - Toxicités modérées (27% grade 3, 4 % grade 4)

Timmerman et al. JAMA 2010, et ASTRO 2014

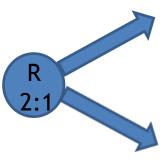
Tumeurs « centrales »

 À proximité du médiastin et/ou de l'arbre trachéobronchique proximal (< 2 cm)

3 x 18-20 Gy

5 x 10 Gy

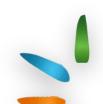
- RTOG 0813:
 - phase I/II d'escalade de dose de 10 à 12 Gy par fraction (5 fractions)
 - T1T2a inopérables, n= 120
 - 5 patients tox ≥ grade 3 dans l'année post-tt
 - Contrôle local > 85% à 2 ans



Supériorité sur la radiothérapie standard

Essai Australien CHISEL (TROG 09.02)

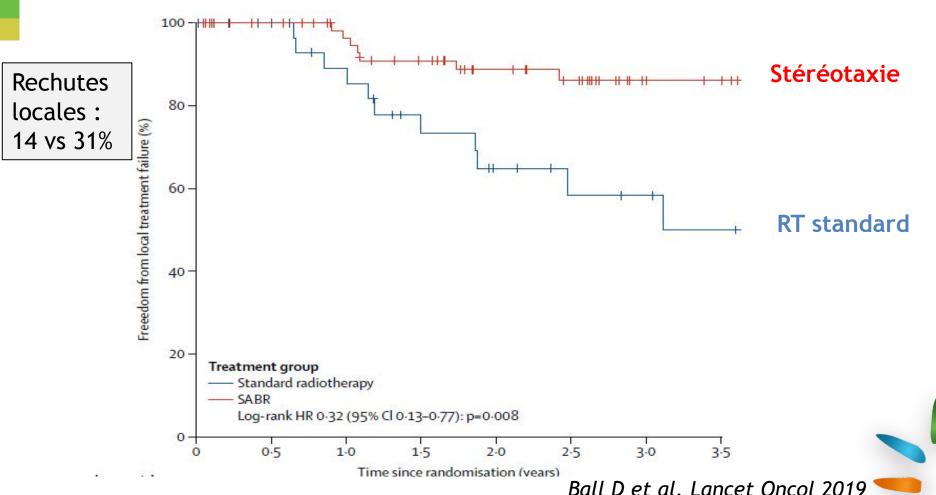
CBNPC T1-T2aN0M0 Inopérables ou refus de chir. (n=101)


Stéréotaxie (3 x 18 Gy ou 4 x 12 Gy selon localisation tum.)

RT standard (33 x 2 Gy ou 20 x 2.5 Gy)

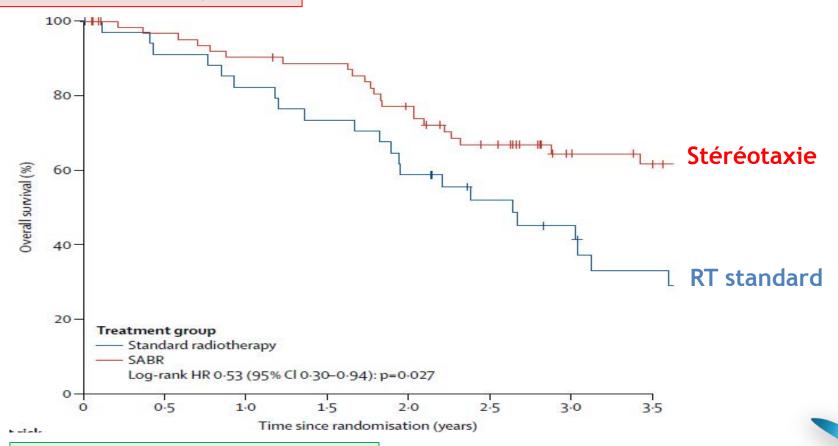
Essai de supériorité de phase III

Suivi médian: 2.1 an


Objectif principal: temps jusqu'à rechute locale

Supériorité sur la radiothérapie standard

Essai Australien CHISEL (TROG 09.02)



Supériorité sur la radiothérapie standard

Essai Australien CHISEL (TROG 09.02)

Gain en survie globale

Bonne tolérance, QdV =

Ball D et al. Lancet Oncol 2019

Et pour les patients opérables ?

Stéréo vs Chirurgie

- 2 phases III ROSEL et STARS arrêtées pour défaut d'inclusion
 - analyse poolée : avantage en survie globale de 15 % dans le groupe stéréo (vs chir) à 3 ans
 Chang et al. Lancet Oncol 2015
- 3 revues systématiques (méta analyses) :
 - Stéréo efficace, surtout si petite taille tumorale et dose élevée
 - Patients chir ≠ patients stéréo
 - Après ajustement, contrôle local et survie similaires

Chi, Radiat Oncol 2010 - Palma IJROBP 2012- Zheng IJROBP 2014


Et pour les patients opérables ?

Essai prospectif sur la Stéréo.

Essai RTOG 0618

- Patients opérables avec CBNPC T1 T2a N0 périphériques
- Stéréotaxie : 54 Gy en 3 fractions
- Suivi médian de 4 ans
- Contrôle local à 96%, une survie sans maladie et une survie globale à 4 ans de respectivement 57 et 56 %
- Tox. faibles (4 tox. grade 3 (15%))
- Mais simple bras et faible effectif (n=33)

Et pour les patients opérables ?

Stéréo vs Chirurgie

CBNPC VALOR (NCT02984761)

- CBNPC T1-T2aN0M0 opérables
- Chirurgie : lobectomie ou résection segmentaire
- Stéréotaxie : 18 Gy x 3, 14 Gy x 4, ou 10-11.5 Gy x 5 fractions
- Objectif principal : survie globale
- 670 patients prévus .. Résultats en 2027..

ASCO, ASTRO 2018 : La chirurgie reste le traitement de référence pour les patients pouvant bénéficier d'une lobectomie

Stéréo. vs Chirurgie

CHIRURGIE	STEREOTAXIE		
Invasif	Moins invasif		
BPCO sévère exclus	BPCO sévère possible		
Staging ganglionnaire	Staging TEP +/- échoendos		
Traitement adjuvant selon pT, pN	-		
Bon Contrôle local	Bon Contrôle local		
Suivi simple	Suivi plus difficile		
Altération de la fonction respi.	Pas ou peu d'altération resp.		

Patients à opérabilité limite

Mr C. en 2014

- Adénocarcinome bronchique LSDt T1 N2 multiple bulky
 - Hypertension artérielle
 - un tabagisme sevré estimé à 30 paquets année

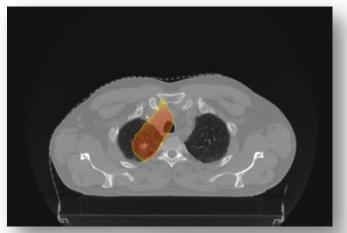
Pas de traitement au long cours en dehors du KENZEN

OMS 0, EFR normales, asymptomatique

Mr C. Primotraitement 2014

RCP: Radiochimio. conco

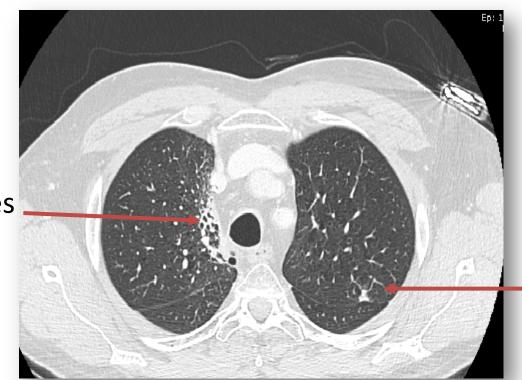
TDM 4D en position de traitement (contention et masque ORFIT)

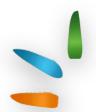


TEP-Thérapie

Mr C. Primotraitement 2014

Radiochimio. conco 66 Gy en 33 fractions en RCMI

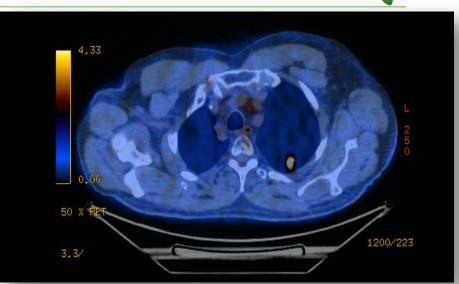


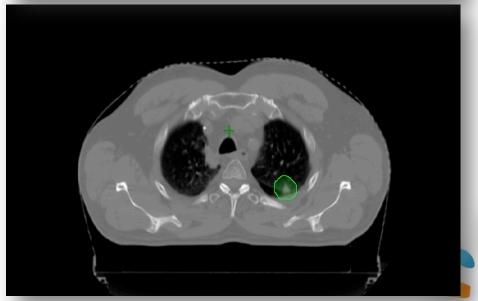

Mr C. Suivi TDM 1 an après le primotraitt en 2015

Séquelles radiques

Nodule LSG

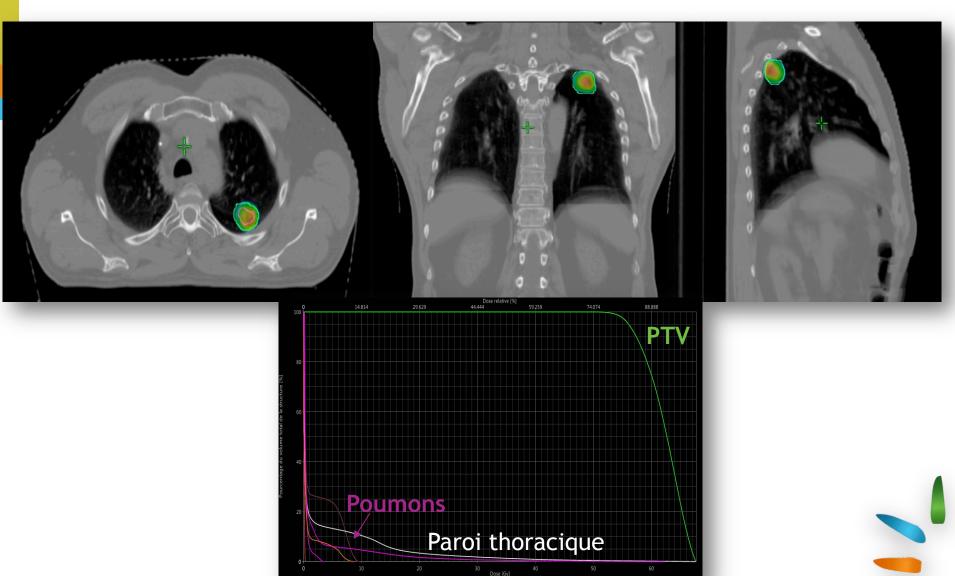
Mr C. TEP 2 ans après le primotraitt en 2016

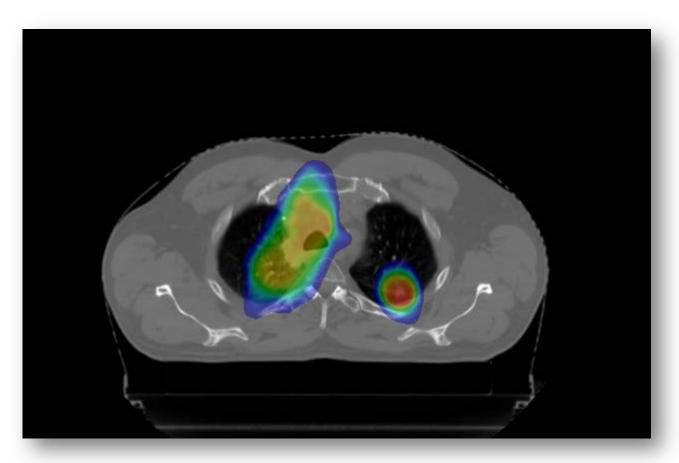



Nodule isolé LSG hypermétabolique en TEP

RCP: STEREOTAXIE

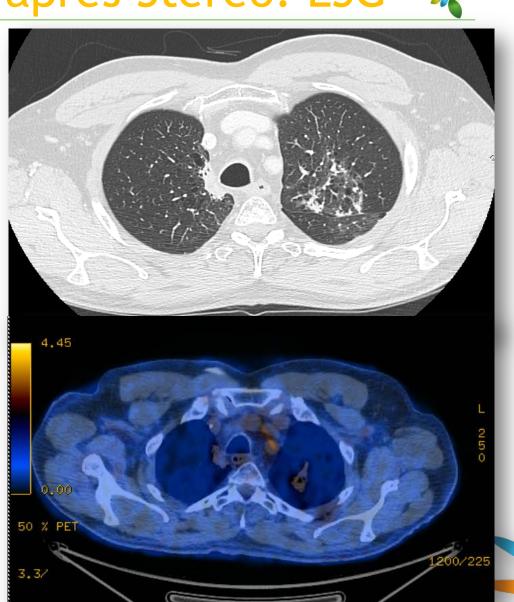
TDM 4D en position de traitement (contention et masque ORFIT)




Mr C. Stéréotaxie en 2016 3 x 18 Gy sur le nodule LSG

Mr C. Stéréotaxie en 2016 3 x 18 Gy sur le nodule LSG

2014 + 2016


Mr C.

Suivi TDM et TEP après Stéréo. LSG

TDM à 3 mois

TEP à 6 mois

Suivi TDM et TEP après stéréotaxie

- **TDM**
 - Pneumopathie puis fibrose pulmonaire
 - Fréquente, parfois importante
 - Rarement symptomatique (~ 5% des cas)
 - Critères de Huang pour la rechute locale

Huang K. et al. Radiother Oncol 2013

- Apport de la TEP :
 - Inflammation post radique ≠ reprise évolutive
 - Seuil de SUV = 5, fixation homogène/hétérogène
 Zhang et al. IJROBP 2012, Bolinelli et al. IJROBP 2012

Mr C. en 2017 8 mois après Stéréo LSG

- Douleurs pariétales postérieures G, irradiation dans le mamelon
 - TDM : pas de fracture
 - Douleur neuropathique

- Traitement symptomatique
- Amélioration en 6-8 semaines

Toxicité pariétale

- Méta-analyse 57 études, 5985 patients
 - Douleurs pariétales : 11 %
 - Fractures costales : 6.3 %
 - Délai de survenue parfois long > 1an
 - FDR: sexe féminin, topographie tum. (<16-25 mm de la paroi thor), Dose à la paroi thor. (vol > 30Gy)

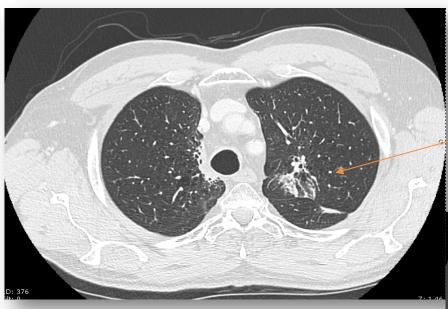
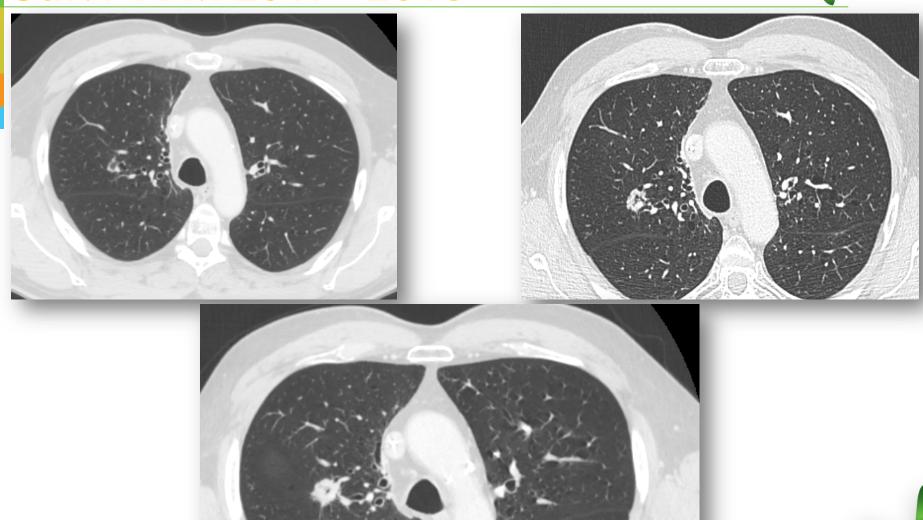
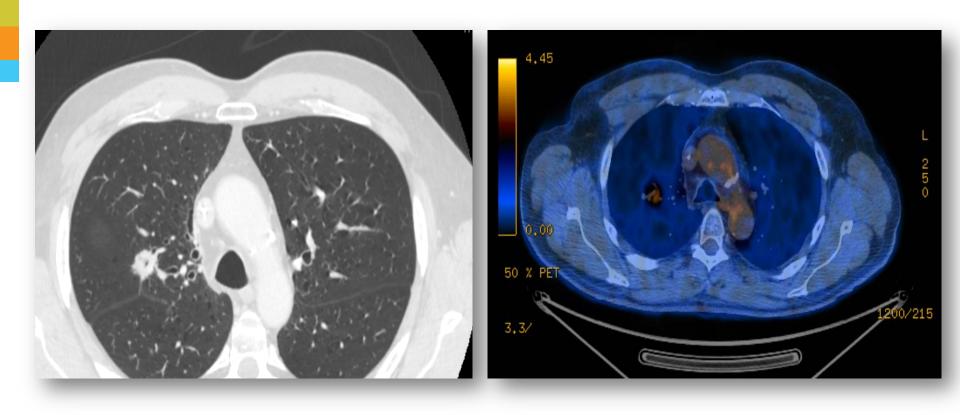

Jie-Tao Ma, IJROBP 2018

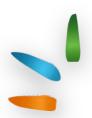
Schéma de dose adapté au risque : 5 fractions au lieu de 3

Coroller PlosOne 2014


Mr C. en 2017 1 an après la stéréotaxie G


Séquelles radiques


Mr C. Suivi TDM 2017- 2018



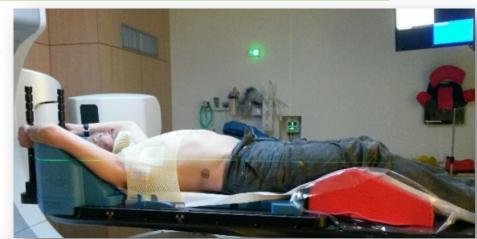
Mr C. 3 ans après la stéréo LSG 2019 : nouveau nodule LSDt

Fixation modérée (SUV max 3.6) et isolée du nodule LSDt

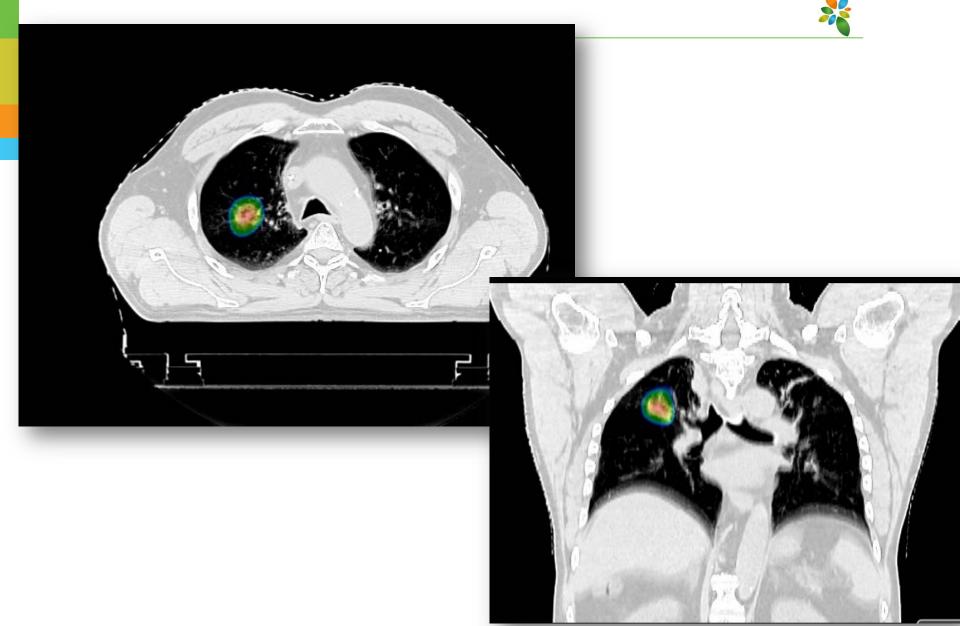
Mr C. 3 ans après la stéréo LSG 2019 : exploration du nodule LSDt

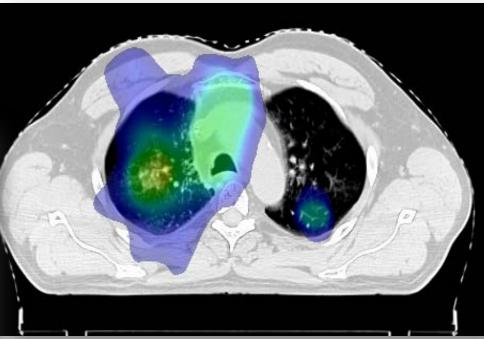
Biopsie en endoscopie superdimension négative, cytologie positive pour adenocarcinome, pas de génotypage possible

- Patient OMS 0, asymptomatique
- Décision de nouveau traitement local en RCP

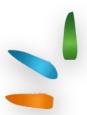

Vérification des doses déjà délivrées et évaluer les possibilités de réirradiation


Mr C. Stéréotaxie LSDt Juillet 2019


TDM 4D en position de traitement (contention et masque ORFIT)


Juillet 2019: 5 x 10 Gy sur le nodule LSDt

Somme de plans 2014 + 2016 + 2019



Zone « chaude » en plein parenchyme pulmonaire

OK Traitement

Facteurs influençant la Stéréotaxie

Patient

Pn. Interstitielles BPCO sévère

Traitements antérieurs

Poumon unique C

Tumeur

Uni ou multifocale Taille Topographie Mouvement

Techniques

Machines dédiées/non dédiées Marqueurs

Schéma d'irradiation

Notre expérience à l'Institut Claudius Regaud -IUCTO

2014 : déménagement IUC

2016 : début du **Gating**

360 patients

2012 : début de la stéréotaxie

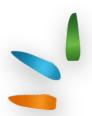
109 patients

41 patients

Au total: 510 patients

- 2000 séances de stéréo pulmonaires
- > 1/2 Kc primitifs

La stéréotaxie pulm. en conclusion



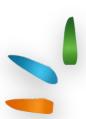
Traitement de référence CBNPC T1-T2a inopérables

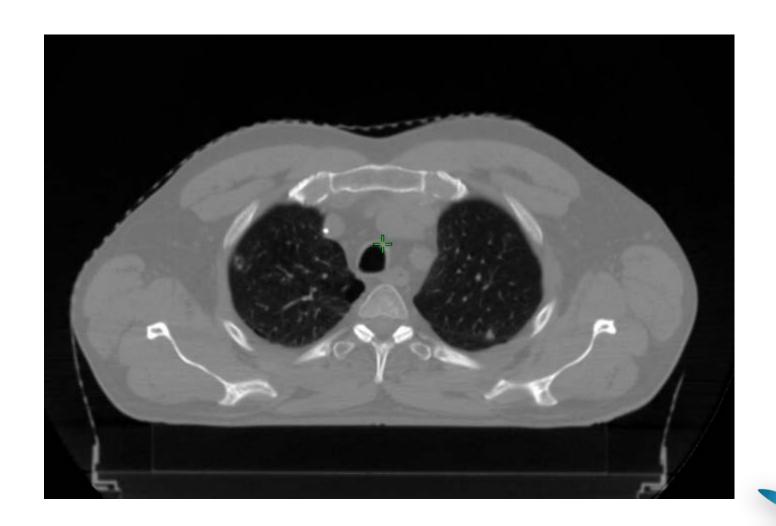
- Elargissement des indications :
 - Patients opérabilité limite/opérables ?
 - Réirradiation
 - T≥5 cm

- Combinaison avec tt systémique :
 - PACIFIC 4 (T1-T3NOMO) : ph. III stéréo vs stéréo + DURVALUMAB



La stéréotaxie pulm. en conclusion


Evaluation et prise en charge multidisciplinaire des patients!

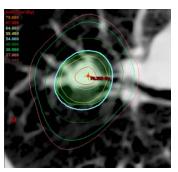

Tumeurs broncho-pulmonaires : primitifs ou métastases pulmonaires

	Type d'étude	TNM	Protocole	Toxicité	Contr ôle local	Survie globale
RTOG 0236 Timmerman et al (2010)	Etude prospective de phase II	CBPNC Stade I	54 Gy en 3 fractions	Pneumopathie radique 7 patients grade 3 2 grade 4	97% à 3 ans	56% à 3 ans
Nagata et al (2005)	Etude prospective	CBPNC Stade IA et IB	48 Gy en 4 fractions	Absence de toxicité avec un grade > à 3	98% à 3 ans	72% à 3 ans
Okunieff et al (2006)	Etude de phase II	Métastases pulmonaires	50 Gy en 5 fractions	2% de toxicité de grade 3	91% à 3 ans	25% à 3 ans
Silva et al (2010)	Méta-analyse	Oligométastases pulmonaires		3% de toxicité de grade 3	78% à 2 ans	53,7% à 2 ans

Etapes de la radiothérapie stéréotaxique

Contention

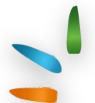
Imagerie


Planification dosimétrique

Vérification de la position du patient

Traitement





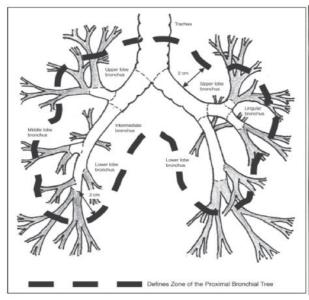
Mars 2018

Douleurs pariétales

- Série de 134 patients traités en 60 Gy en 3 fractions
- 10 patients avec toxicités sur la paroi thoracique de grade I/II
- Délai médian de 8.8 mois
- Taille tumorale et volume de paroi thoracique recevant plus de 30 Gy (>30 cc) et plus de 60 Gy (>3cc) lié au risque de toxicité pariétale

Stephans KL et al. IJROBP 2012

Définition


Tumeurs périphériques

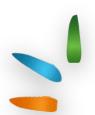
- A distance du médiastin et/ou de l'arbre trachéobronchique proximal (> 1 ou 2 cm)
- Proche de la paroi thoracique (< 1 ou 2 cm) ou non (>1 ou 2 cm)

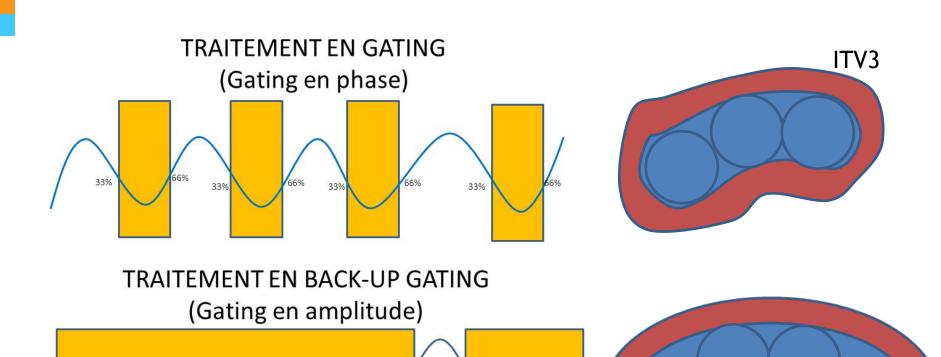
Tumeurs centrales

- À proximité du médiastin et/ou de l'arbre trachéobronchique proximal (< 1 ou 2 cm)
- A proximité du diaphragme, de l'apex, du cœur, de la vertèbre

NO FLY ZONE

Timmerman JCO 2006


Situations particulières


Taille tumorale > 5 cm

 Tumeurs situées au contact du cœur, de l'œsophage, des gros vaisseaux, de l'arbre trachéobronchique :
 « Ultracentrales »

Adaptation de la dose et du fractionnement

Prise en compte des mouvements respiratoires : gestion des cibles très mobiles : le Gating

\$ 0.4 cm

1 0.4 cm